Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаврусь О. Е. Конспект лекций по теории вероятностей.doc
Скачиваний:
244
Добавлен:
15.03.2016
Размер:
1.27 Mб
Скачать

5. Числовые характеристики случайных величин

Как мы уже выяснили, закон распределения полностью характеризует случайную величину, так как позволяет вычислить вероятности любых событий, связанных с этой случайной величиной.

Однако, во-первых, закон распределения не всегда известен, а, во-вторых, для решения многих практических задач совсем необязательно знать закон распределения. Достаточно знать отдельные числовые характеристики, которые в сжатой, компактной форме выражают наиболее существенные черты распределения.

Например, можно составить законы распределения двух случайных величин – числа очков, выбиваемых двумя стрелками, – и выяснить, какой из двух стрелков стреляет лучше. Однако, даже не зная законов распределения, можно сказать, что лучше стреляет тот, кто в среднем выбивает большее количество очков.

Таким средним значением случайной величины является математическое ожидание.

5.1. Математическое ожидание случайной величины

Определение. Математическим ожиданием, или средним значением, M(X) дискретной случайной величины X называется сумма произведений всех ее значений на соответствующие им вероятности:

.

(5.1)

Заменим в формуле для дискретной случайной величины знак суммирования по всем ее значениям знаком интеграла с бесконечными пределами, дискретный аргумент xi – непрерывно меняющимся х, а вероятность pi – элементом вероятности f(x)dx. Получаем формулу для математического ожидания непрерывной случайной величины (если интеграл абсолютно сходится):

.

(5.2)

Рассмотрим свойства математического ожидания.

1. Математическое ожидание постоянной величины равно самой постоянной:

М(С) = С.

(5.3)

2. Постоянный множитель можно выносить за знак математического ожидания, т.е.

M(СX) = С·M(X).

(5.4)

3. Математическое ожидание алгебраической суммы конечного числа случайных величин равно такой же сумме их математических ожиданий, т.е.

М(X Y) = M(X) M(Y).

(5.5)

4. Математическое ожидание произведений конечного числа случайных величин равно произведению их математических ожиданий, т.е.

M(XY) = M(XM(Y).

(5.6)

5. Если все значения случайной величины увеличить (или уменьшить) на постоянную С, то на эту же постоянную С увеличится (или уменьшится) математическое ожидание этой случайной величины:

М(X С) = M(X) С.

(5.7)

6. Математическое ожидание отклонения случайной величины от ее математического ожидания равно нулю:

M[XM(X)] = 0.

(5.8)

Пример 5.1. Найти математическое ожидание случайной величины Z = 8X – – 5Y + 7, если известно, что M(X) = 3, M(Y) = 2.

Решение. Используя свойства 1, 2, 3 математического ожидания, находим

M(Z) = 8M(X) – 5M(Y) + M(7) = 8·3 – 5·2 + 7 = 21. ◄

Итак, мы установили, что математическое ожидание является важной числовой характеристикой случайной величины. Однако одно лишь математическое ожидание не может в достаточной степени характеризовать случайную величину.

Вернемся к задаче о стрелках. При равенстве средних значений числа выбиваемых очков, вопрос о том, какой из стрелков стреляет лучше, остается открытым. Однако в этом случае можно сделать предположение, что лучше стреляет тот стрелок, у которого отклонения числа выбитых очков от среднего значения меньше.

Мерой рассеяния значений случайной величины вокруг ее математического ожидания служит дисперсия (слово дисперсия означает «рассеяние).