Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаврусь О. Е. Конспект лекций по теории вероятностей.doc
Скачиваний:
269
Добавлен:
15.03.2016
Размер:
1.27 Mб
Скачать

6.6. Нормальный закон распределения

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Определение. Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса) с параметрами а и σ2, если ее плотность вероятности f(x) имеет вид:

.

(6.19)

Кривую нормального закона распределения называют нормальной или гауссовой кривой. На рис. 6.5 а), б) показана нормальная кривая с параметрами а и σ2 и график функции распределения.

Обратим внимание на то, что нормальная кривая симметрична относительно прямойх=а, имеет максимум в точкех=а, равный, и две точки перегибах=аσс ординатами.

Можно заметить, что в выражении плотности нормального закона параметры распределения обозначены буквами а и σ2, которыми мы обозначали математическое ожидание и дисперсию. Такое совпадение не случайно. Рассмотрим теорему, которая устанавливает теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины Х, распределенной по нормальному закону, равно параметру a этого распределения, т.е.

М(Х) = а,

(6.20)

а ее дисперсия – параметру σ2, т.е.

D(X) = σ2.

(6.21)

Выясним, как будет меняться нормальная кривая при изменении параметров а и σ.

Если σ = const, и меняется параметр a (а1 < а2 < а3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 6.6).

Рис. 6.6

Рис. 6.7

Если а = const и меняется параметр σ, то меняется ордината максимума кривой fmax(a) =. При увеличенииσ ордината максимума уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс. При уменьшении σ, напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков (рис. 6.7).

Таким образом, параметр a характеризует положение, а параметр σ – форму нормальной кривой.

Нормальный закон распределения случайной величины с параметрами a = 0 и σ = 1 называется стандартным или нормированным, а соответствующая нормальная кривая – стандартной или нормированной.

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, связана с тем, что интеграл от функции нормального распределения не выражается через элементарные функции. Однако его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или. Такую функцию называютфункцией Лапласа, для нее составлены таблицы. Существует много разновидностей такой функции, например:

, .

Мы будем использовать функцию

.

(6.22)

Для такой функции табличные значения приведены в Приложении 2.

Теорема. Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле

.

(6.23)

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины Х, распределенной по нормальному закону, в интервал [α, β] равна

,

(6.24)

где ,.

2. Вероятность того, что отклонение случайной величины Х, распределенной по нормальному закону, от математического ожидания a не превысит величину δ > 0 (по абсолютной величине), равна

,

(6.25)

где .

Вычислим по этой формуле вероятности при различных значенияхδ (используя таблицу значений функции Лапласа):

при δ = σ = 2Ф(1) = 0,6827;

при δ = 2σ = 2Ф(2) = 0,9545;

при δ = 3σ = 2Ф(3) = 0,9973.

Отсюда вытекает так называемое «правило трех сигм»:

Если случайная величина Х имеет нормальный закон распределения с параметрами a и σ, то практически достоверно, что ее значения заключены в интервале (a – 3σ; a + 3σ).

Пример 6.3. Полагая, что рост мужчин определенной возрастной группы есть нормально распределенная случайная величина Х с параметрами а = 173 и σ2= 36, найти:

  1. Выражение плотности вероятности и функции распределения случайной величины Х;

  2. Долю костюмов 4-го роста (176 – 183 см) и долю костюмов 3-го роста (170 – 176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы;

  3. Сформулировать «правило трех сигм» для случайной величины Х.

Решение.

1.Находим плотность вероятности

и функцию распределения случайной величины Х

= .

2.Долю костюмов 4-го роста (176 – 182 см) находим как вероятность

Р(176 ≤ Х ≤ 182) = = Ф(1,5) – Ф(0,5).

По таблице значений функции Лапласа (Приложение2) находим:

Ф(1,5) = 0,4332, Ф(0,5) = 0,1915.

Окончательно получаем

Р(176 ≤Х≤ 182) = 0,4332 – 0,1915 = 0,2417.

Долю костюмов 3-го роста (170 – 176 см) можно найти аналогично. Однако проще это сделать, если учесть, что данный интервал симметричен относительно математического ожидания а= 173, т.е. неравенство 170 ≤Х ≤ 176 равносильно неравенству │Х– 173│≤ 3. Тогда

Р(170 ≤Х≤176) =Р(│Х– 173│≤ 3) = 2Ф(3/6) = 2Ф(0,5) = 2·0,1915 = 0,3830.

3. Сформулируем «правило трех сигм» для случайной величины Х:

Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а – 3σ = 173 – 3·6 = 155 до а + 3σ = 173 + 3·6 = 191, т.е. 155 ≤ Х ≤ 191. ◄