
- •Isbn 978-966-2007-12-1 © Барало о.В., Самойленко п.Г.
- •1. Основи автоматизації сільськогосподарського виробництва
- •1.1. Загальні відомості про автоматизацію виробничих процесів
- •1.1.1. Основні визначення автоматизації технологічних процесів
- •Питання для самоконтролю
- •Питання для самоконтролю
- •1.2.2. Технічна база для автоматизації сільськогосподарського виробництва
- •1.2.3. Основні завдання автоматизації технологічних процесів
- •Питання для самоконтролю
- •Питання для самоконтролю
- •1.2.6. Технологічні вимоги при розробці систем автоматичного керування
- •1.2.7. Технологічні установки як об’єкти автоматизації
- •У змішувач; y1 і y2 – вихідні величини – вологовміст Wк. В. Та концентрація корму Ск.В. Кормосуміші
- •1.2.8. Вихідна інформація про технологічні процеси як об’єкти керування
- •Питання для самоконтролю
- •1.3.2. Класифікація електричних схем
- •Характеристики типів схем
- •Коди видів і типів схем автоматизації
- •Питання для самоконтролю
- •Основні позначення на функціональній схемі
- •Умовні графічні зображення на схемах автоматизації
- •Особливості зображення виконавчих механізмів
- •Літерне позначення на схемах автоматизації (гост 21.404-85)
- •Приклади побудови умовних позначень окремих приладів і засобів автоматизації
- •Додаткові позначення для перетворювачів сигналів
- •Виконання схем автоматизації
- •Питання для самоконтролю
- •Графічні позначення на принципових електричних схемах
- •Літерні коди для показу функціонального призначення елементів
- •Літерні коди найпоширеніших видів елементів
- •Зображень елементів на електричних схемах:
- •Виконаної адресним способом
- •Виконаної графічним способом
- •Фрагмент таблиці з’єднань
- •Питання для самоконтролю
- •Момент обертання заслінки визначають за формулою
- •Технічна характеристика звукових сигнальних апаратів
- •1.4.2. Вибір щитів і пультів керування
- •Позначення щитів і пультів
- •Перелік елементів
- •1.4.3. Розміщення приладів і засобів автоматизації
- •Питання для самоконтрою
- •Питання для самоконтрою
- •Динамічні коефіцієнти регулювання для астатичних об’єктів
- •Відносний час регулювання
- •Питання для самоконтролю
- •1.7.2. Основні показники надійності автоматичної системи
- •Час експлуатації для визначення імовірності безвідмовної роботи
- •Інтенсивність відмов
- •Значення коефіцієнта навантаження залежно від умов експлуатації
- •Значення коефіцієнта температури залежно від температури і вологості середовища
- •Зразок таблиці для розрахунку інтенсивності відмов
- •Питання для самоконтролю
- •2.1.2. Автоматизація безбаштових насосних установок
- •Установки з гідроакумулятором типу ву:
- •Питання для самоконтролю
- •Заглибного насоса за рівнем води у водонапірній башті
- •Питання для самоконтролю
- •2.1.4. Безконтактні станції керування насосними агрегатами
- •І захисту (усуз) заглибних електронасосних агрегатів
- •Питання для самоконтролю
- •Агрегату “Каскад-к1м” з приладом “мпзк-50”
- •Питання для самоконтролю
- •Керування двохагрегатної відкачувальної насосної станції
- •Питання для самоконтролю
- •Краплинним зрошуванням:
- •Питання для самоконтролю
- •Питання для самоконтролю
- •2.2.2. Автоматизація вентиляційних установок
- •Установки “Клімат-4м”
- •Установкою “Клімат-4м”
- •Питання для самоконтролю
- •1. Які засоби автоматизації використовуються у вентиляційній установці із станцією керування шоа-9203.
- •2.2.3. Автоматизація тиристорних станцій керування вентиляційними установками
- •Технічна характеристика тсу-4кл.
- •Питання для самоконтролю
- •Питання для самоконтролю
- •Питання для самоконтрою
- •Питання для самоконтролю
- •Питання для самоконтролю
- •2.2.9. Автоматизація мікроклімату з використанням програмних контролерів
- •Вентиляції трм 133
- •Припливної вентиляції трм 133
- •Вентиляції трм 133
- •3. Які пристрої використовуються для вимірювання температури в автоматизованій системі вимірювання температури в пташнику “Каштан-т”?
- •Вологих кормосумішей квк-ф-15:
- •Кормороздавальної гідравлічної системи:
- •Тросово-шайбового кормороздавача
- •Підлоговому утриманні птахів:
- •Обладнання бкм-3.
- •Питання для самоконтролю
- •1. Які засоби автоматизації використовуються в кормороздавачі рвк-ф-74?
- •Питання для самоконтролю
- •Посліду типу мпс:
- •Для прибирання посліду типу мпс
- •Питання для самоконтролю
- •Гною з використанням візків
- •Потокової лінії прибирання гною:
- •Потокової лінії прибирання гною
- •Ри. 2.4.9. Схема збирання гною пневмотранспортом:
- •Питання для самоконтролю
- •8. Як працює система прибирання гною пневмотранспортуванням?
- •9. Використовуючи принципову електричну схему потокової лінії прибирання гною, вкажіть, яким пристроєм здійснюється автоматичне вмикання лінії?
- •2.5. Автоматизація доїльних установок та машин первинної обробки молока
- •2.5.1. Автоматизація доїльних установок
- •Питання для самоконтролю
- •5. Використовуючи принципову електричну схему доїльного агрегату адм-8а1, вкажіть принцип дії датчика рівня молока у молокозбірнику.
- •6. Використовуючи принципову електричну схему доїльного агрегату адм-8а1, вкажіть призначення блоку smm 301/0.
- •7. Використовуючи принципову електричну схему доїльного агрегату адм-8а1, вкажіть, чим забезпечується керування етапами роботи доїльного агрегату.
- •2.5.2. Автоматизація первинної обробки молока
- •Молока том-2а (силове коло)
- •Питання для самоконтролю
- •Освітленням у функції освітленості
- •Питання для самоконтроля
- •Установки ультрафіолетового опромінення уо-4м
- •Питання для самоконтрою
- •Питання для самоконтролю
- •Збиранням яєць в пташнику
- •Питання для самоконтролю
- •5. Використовуючи принципову електричну схему лінії збору яєць у пташнику, вкажіть, для чого використовуються тумблерні перемикачі sa2...Sa7?
- •2.7.2. Автоматизація процесу забою птиці
- •Питання для самоконтролю
- •Процесу сушіння агрегату авм-1,5б:
- •Питання для самоконтролю
- •Борошна огм-0,8а:
- •3.2.2. Автоматизація брикетування та пресування кормів
- •Устаткуванням опк-2
- •Питання для самоконтролю
- •Потокової лінії приготування коренеплодів
- •Потокової лінії приготування концентрованих кормів
- •3.3.2. Автоматизація дозування кормів
- •3.3.3. Автоматизація установок для змішування кормів
- •Приготування кормів апк-10а
- •Питання для самоконтролю
- •Обладнання кормоцеху корк-15-1
- •Питання для самоконтролю
- •Для зерноочищення:
- •Питання для самоконтролю
- •Барабанними зерносушарками сзсб-8
- •Питання для самоконтролю
- •Зерна на базі бункера бв–25:
- •Електроспоживачів бункера бв–25
- •Активного вентилювання зерна бв–25
- •Автоматичного контролю і роботи бв–25
- •Відносної вологості агента сушіння в бункері для активного вентилювання зерна
- •Питання для самоконтролю
- •Насіннєочисною машиною см-4
- •Насіння системи “кедр”:
- •Зерна в бункерах системи “кедр”:
- •Питання для самоконтролю
- •5.1.2. Агротехнічні вимоги до автоматизації технологічних процесів у закритому грунті
- •5.1.3. Обсяг механізації й автоматизації технологічних
- •5.1.4. Автоматизація обігріву парників
- •Із грунтово-повітряним електрообігріванням
- •Устаткування типу кп-1
- •Питання для самоконтролю
- •В теплиці (а – вигляд з боку, б – вигляд зверху)
- •Обладнання ут-12 в теплиці
- •Питання для самоконтролю
- •5.3.2. Автоматичне управління концентрацією розчину мінеральних добрив
- •Мінеральних добрив
- •5.3.3. Автоматичне управління підживленням вуглекислим газом і досвіченням рослин
- •І підживленням вуглекислим газом
- •Питання для самоконтролю
- •Рослин в теплиці установкою от-400ми
- •Питання для самоконтролю
- •І датчиків положення заслінки
- •(ТеНи, двигуни, пристрої сигналізації); 3-х позиційними (засувки, крани)
- •Питання для самоконтролю
- •Управління мікрокліматом “Середовище-1”
- •1. Яка характеристика лікувального періоду для картоплі в овочесховищі?
- •Питання для самоконтролю
- •І яблук (б) за оптичними спектральними характеристиками:
- •Питання для самоконтролю
- •Питання для самоконтролю
- •Питання для самоконтролю
- •8. Який пристрій теплогенератора використовується для виміру і регулювання температури в приміщені?
- •Регулятора системи “Кристал”
- •Вузлів регулятора системи “Кристал”
- •Питання для самоконтролю
- •Водонагрівника вет-400
- •Типу уап-800
- •Проточним водонагрівачем епв-2а
- •Рису.7.12. Технологічна схема електронагрівника веп-600
- •Електронагрівником веп-600
- •Котлом-пароутворювачем типу кепр-160 і кепр-250
- •Питання для самоконтролю
- •Питання для самоконтролю
- •Двоканального програмного під-регулятора трм151:
- •Питання для самоконтролю
- •Установки мху-8с
- •Установки ув-10
- •Машинами трм961
- •Машинами трм961
- •Питання для самоконтролю
- •1. Які холодильні установки використовують на тваринницьких молочних фермах?
- •2. На основі якого охолодження працюють переносні холодильники?
- •3. В яких замкнутих контурах працює водоохолоджувальна установка ув-10?
- •Питання для самоконтролю
- •7. До чого зводиться віброакустичний метод діагностики?
- •8. До чого зводиться спектрофотометричний метод діагностики?
- •8.1.2. Автоматизація технологічних процесів миття, розбирання і збирання агрегатів
- •Питання для самоконтролю
- •Питання для самоконтролю
- •Питання для самоконтролю
- •4. Якими задатчиками обладнаний обкатувальний стенд з авк?
- •Питання для самоконтролю
- •Питання для самоконтролю
- •9.3.2. Централізований контроль та управління в сільськогосподарському виробництві
- •Питання для самоконтролю
- •Жулай є.Л. Електропривод сільськогосподарських машин, агрегатів та потокових ліній. – к., 2002.
- •Св альтера “Электротехника & Автоматизация”. Каталог продукции 2009. Г. Киев.
- •Навчальне видання
Насіннєочисною машиною см-4
Механізмом самопересування машина переміщується вздовж бурта при роботі та від бурта до бурта без допоміжних транспортних засобів. Механізм самопересування складається з храпового механізму, відкритого циліндричного редуктора, ланцюгових передач на ходові колеса і вала керування кулачковими муфтами.
При роботі машини обертовий момент від електродвигуна М на ходові колеса передається через храповий механізм 5, машина рухається на малій швидкості. Для переїзду від одного робочого місця до іншого з більшою швидкістю замикають півмуфту 11.
Електродвигуни привода робочих органів машини вмикають натисканням кнопок SB2 і SВ4 (рис. 4.22). Для захисту від коротких замикань встановлено автоматичний вимикач QF. Захист електродвигунів від перевантажень здійснюють теплові реле КК1 і КК2.
Ступінь завантаження машини регулюється автоматично шляхом вмикання і вимикання механізму самопересування. Для цього живильний пристрій, що складається з розподільного шнека 1 (рис. 4.23), рухомої перегородки 2 і підпружиненого клапана-живильника 3, обладнано вимикаючим упором 8 і кінцевим вимикачем 4. При переповненні кожуха розподільного шнека клапан 3 відтискується зерном, що подається на очищення, і через упор 8 діє на кінцевий вимикач 4 (рис. 4.23). Останній вмикає електромагніт 5 (рис. 4.23), встановлений на механізмі самопересування, який піднімає заскочку 6 храпового колеса 7. Механізм самопересування вимикається, і подача зерна на очищення зменшується.
Рис. 4.23. Схема регулятора завантаження насіннєочисної машини СМ-4:
1 – розподільний шнек; 2 – рухома перегородка; 3 – клапан-живильник;
4 – кінцевий вимикач; 5 – електромагніт; 6 – заскочка; 7 – храпове колесо;
8 – упор
Широко застосовується метод контролю завантаження робочих органів збиральних машин, який грунтується на контролі частоти обертання робочих валів. При перевантаженні будь-якого органу машини його вал зменшує частоту обертання. На індикації частоти обертання і створюються системи контролю завантаження робочих органів сільськогосподарських машин.
Останнім часом розроблений і виготовляється цілий клас таких систем. Крім контролю частоти обертання, вони контролюють втрати продукції, рівень її в бункерах тощо.
Розглянемо конструкцію та роботу такої системи контролю на прикладі УСАК-13. Система призначена для автоматичного контролю частоти обертання 13 робочих органів самохідної коренезбиральної машини КС-6 та подачі світлової та звукової сигналізації при зниженні частоти обертання у тому чи іншому вузлі з визначенням його місце знаходження. За допомогою сигнальних ламп контролюють приводи копачів (з 1 по 6 датчик), шнеку (датчик 7), бітерів копачів (датчик 8), передавального вала (датчик 9), поздовжнього транспортера (датчик 10), завантажувального елеватора (датчик 11), стрічкового транспортера (датчик 12), грудкоподрібніювача (датчик 13). Система УСАК-13 складається з 14 датчиків (один запасний), блока управління, а також 14 кабелів для під’єднання датчиків до блока.
Блок управління призначений для сприймання сигналів від датчиків, їх аналізу та формування сигналу на індикаторах. До блока приєднують всі елементи і вузли системи. На його передній панелі розміщені клеми для підключення живлення від електрообладнання комбайна, клема підключення звукового сигналу, штепсельний роз’єм «Індикатор» для підключення індикатора та “Датчик” – датчиків, перемикач “К-І” – для перевірки справності системи, два запобіжники: “2А” – для кола живлення і “5А” – для кола звукового сигналу. Зверху блока знаходиться кришка, яка закриває місце перемикача “Датчик” для встановлення кількості підключених до системи датчиків, і перемикач “Оберти”, за допомогою якого встановлюють режим роботи системи контролю.
Індикатор системи призначений для розміщення органів управління та індикаторів візуальної сигналізації аварійного стану вузлів, які підлягають контролю.
Індикатор виконаний у вигляді малогабаритного блока. На його передній панелі встановлені вимикачі живлення системи “ВКЛ” та звукового сигналу “ГУДОК”, індикаторна лампа наявності живлення та 13 сигнальних ламп. На задній панелі змонтоване штепсельне розняття для підключення кабелю від блоку управління.
Датчик системи здійснює перетворення механічного руху обертання у послідовність електричних імпульсів. Це електромагніт з двома обмотками, розміщеними у стальному циліндричному корпусі, і магнітним шунтом на валу, який контролюють. Одну з обмоток використовують для створення електромагніту, а другу електричних сигналів. У корпусі датчика знаходиться фланець для встановлення датчика на вузлі. Перетворення механічного руху в електричні сигнали здійснюється за допомогою магнітних шунтів, виконаних з урахуванням конструкції й частоти обертання робочих валів.
На рис 4.24. зображена електрична схема системи контролю, яка складається з конденсатора С, електронного ключа К і порогового елемента НL. Зарядження конденсатора здійснюється за рахунок постійної напруги Uж на резисторі R. Електронний ключ спрацьовує в такт з імпульсом, який надходить від датчика. Пороговий елемент спрацьовує, якщо напруга на конденсаторі досягає граничного значення Uгр. Для реалізації порогового елемента використовують тиратрони типу МХТ-80 в діодному підключенні або світлодіоди.
Рис. 4.24. Спрощена принципова схема обладнання контролю УСАК:
С – конденсатор; К – електронний ключ; R – резистор; HL – тиратрон
Принцип дії системи такий. Імпульси від датчика надходить на електронний ключ К, замикають його і в цей час через ключ розряджається конденсатор С. Заряджається він при розімкненому К до напруги Uгр за час Тгр. Якщо період між двома імпульсами менший за Тгр, то конденсатор не встигає зарядитись до напруги Uгр і пороговий елемент не спрацьовує. При зниженні частоти обертання робочого вала під дією перевантаження імпульси від датчика будуть надходити через більший проміжок часу. Якщо період буде більший Тгр, напруга па конденсаторі С встигає досягти Uгр, що призведе до спрацювання порогового елемента. При цьому конденсатор буде розряджатись через тиратрон HL. Світлова індикація проявляється у вигляді періодів загоряння тиратрона.
Ключ К складається з двох каскадів, виконаних на транзисторах VT1 та VT2 (рис. 4.25). Перший каскад підсилює імпульси, які надходять від датчика, до рівня спрацювання другого каскаду. При відкриванні транзистора VT2 через нього розряджається конденсатор С.
Рис. 4.25. Принципова електрична схема електронного ключа обладнання контролю УСАК: R1…R3 – резистори; С – конденсатор; VT1,
VT2 – транзистори; Uд – сигнал від датчика
Для перевірки стану основних блоків УСАК у процесі роботи застосовують блок самоконтролю, який складається з генератора, що виробляє імпульси з частотою вищою ніж частота імпульсів від датчиків. При подачі напруги з такою частотою на виході всіх каналів повинні з’явитись сигнали “відсутність відхилень”, що свідчить про нормальну роботу системи.
Важливими системами контролю за правильним виконанням технологічних операцій є системи контролю висіву: “КЕДР”, УСК, ХА та ін. У сівалках часто порушується нормальна робота механізмів: забиваються грунтом сошники, потрапляють сторонні предмети у висівні апарати тощо. Всі ці недоліки призводять до нерівномірності висівання зерна, що істотно знижує врожайність. Контроль за роботою сівалок дозволяє водію приділяти основну увагу водінню агрегату, забезпечуючи прямолінійність рядків та задане стикування міжрядь.
Систему “КЕДР” встановлюють на сівалках СУПН. Живиться вона від бортової електричної мережі трактора, з яким агрегатується сівалка, і складається з восьми датчиків контролю висіву насіння та двох – рівня насіння, блоків підсилювання та індикації і з’єднувальних кабелів. Датчики контролю висіву насіння – це П-подібний корпус, де знаходяться освітлювальна лампа, фотодатчик та електричний підсилювач (рис. 4.26). При подачі живлення лампа HL освітлює фотодіод BL, який є чутливим елементом. Насіння, яке висівається, перетинає світловий промінь між лампою та фотодіодом, що спричиняє зміну фотоструму. Фотодіод через конденсатор С1, підключений до двокаскадного транзисторного підсилювача (транзистори VTI і VT2). При зміні фотоструму на виході підсилювача виникають електричні імпульси.
Рис. 4.26. Принципова схема датчика контролю висіву