
- •Комбинаторика
- •Комбинаторный принцип умножения
- •Размещения
- •Перестановки
- •Сочетания
- •Размещения с повторениями
- •Алгебра событий
- •Предмет теории вероятностей
- •Классификация событий
- •Действия над событиями
- •Вероятность события
- •Относительная частота события и ее свойства
- •Статистическое определение вероятности
- •Аксиоматическое определение вероятности
- •Классическое определение вероятности
- •Геометрическое определение вероятности
- •Алгебра вероятностей
- •Условная вероятность
- •Правило умножения вероятностей
- •Независимость двух событий
- •Независимость n событий
- •Правила сложения вероятностей
- •Формулы полной вероятности и Байеса
- •Формула полной вероятности
- •Формула Байеса
- •Схема Бернулли проведения независимых испытаний. Биномиальная вероятность
- •Приближенная формула Пуассона для вычисления биномиальной вероятности
- •Локальная и интегральная формулы Муавра-Лапласа
- •Одномерная случайная величина
- •Определение случайной величины
- •Дискретная случайная величина
- •Числовые характеристики дискретной случайной величины
- •Понятие числовой характеристики случайной величины
- •Математическое ожидание
- •Дисперсия
- •Мода
- •Начальные и центральные моменты
- •Биномиальное, Пуассона, геометрическое распределения
- •Биномиальное распределение
- •Распределение Пуассона
- •Геометрическое распределение
- •Непрерывная случайная величина
- •Числовые характеристики непрерывной случайной величины
- •Нормальное, показательное, равномерное распределения
- •Нормальное распределение (закон Гаусса)
- •Показательное распределение
- •Равномерное распределение
- •Двумерная случайная величина
- •Двумерная случайная величина, ее функция распределения
- •Дискретная двумерная случайная величина, ее таблица распределения
- •Непрерывная двумерная случайная величина. Плотность вероятности
- •Примеры двумерных непрерывных распределений
- •Равномерное распределение
- •Нормальное распределение
- •Зависимость и независимость двух случайных величин
- •Условные законы распределения. Числовые характеристики двумерной случайной величины. Связь между случайными величинами
- •Условные законы распределения
- •Числовые характеристики
- •Корреляционные момент и коэффициент корреляции
- •Предельные теоремы
- •Неравенства Маркова и Чебышёва
- •Неравенство А.А. Маркова
- •Неравенство П.Л. Чебышёва
- •Теоремы Чебышёва и Бернулли
- •Центральная предельная теорема для случая одинаково распределенных слагаемых
- •Цепи Маркова. Понятие случайного процесса
- •Введение в математическую статистику
- •Предмет математической статистики
- •Описательная статистика
- •Генеральная совокупность. Выборка. Выбор
- •Вариационный и статистический ряды
- •Выборочная функция распределения
- •Выборочные числовые характеристики
- •Основные оценки
- •Группированный статистический ряд. Гистограмма
- •Группированный статистический ряд
- •Оценивание генеральных числовых характеристик с помощью интервального статистического ряда
- •Гистограмма
- •Точечное оценивание числовых характеристик и параметров распределения генеральной совокупности
- •Понятие точечной статистической оценки. Требования к оценкам
- •Свойства выборочного среднего и выборочной дисперсии
- •Свойства
- •Свойства моментов
- •Метод моментов получения оценок параметров генерального распределения
- •Метод максимального правдоподобия получения оценок параметров генерального распределения
- •Интервальное оценивание числовых характеристик и параметров распределения генеральной совокупности
- •Доверительный интервал. Точность и надежность оценки
- •Доверительный интервал для математического ожидания нормальной генеральной совокупности
- •Доверительный интервал для среднего квадратического отклонения любой генеральной совокупности при большом объеме выборки
- •Проверка статистических гипотез
- •Виды статистических гипотез
- •Критерий значимости. Общая схема проверки статистических гипотез
- •Ошибки первого и второго рода. Односторонний и двусторонний критерий
- •Ошибки первого и второго рода
- •Односторонний и двусторонний критерии
- •Проверка гипотезы о равенстве дисперсий двух нормальных генеральных совокупностей
- •Проверка гипотезы о равенстве математических ожиданий двух генеральных совокупностей
- •Проверка гипотезы о законе распределения генеральной совокупности
- •Общие вопросы
- •Параметры проверяемого закона полностью известны
- •Параметры проверяемого закона неизвестны
- •Критерий Колмогорова
Глава 10
Точечное оценивание числовых характеристик и параметров распределения генеральной совокупности
Одной из важнейших задач математической статистики является задача приближенного вычисления числовых характеристик и параметров закона распределения изучаемой случайной величины. Эта задача называется задачей оценивания неизвестных величин. Сформировались два направления в теории оценивания - точечное и интервальное. В настоящей главе рассматривается теория точечного оценивания.
10.1Понятие точечной статистической оценки. Требования к оценкам
Определение. Точечной статистической оценкой неизвестной числовой характеристики
|
ˆ |
, . . . , xn), зависящая от элемен- |
или параметра θ распределения называется функция θn(x1 |
||
тов выборки, приближенно равная θ: |
|
|
ˆ |
, . . . , xn) ≈ θ. |
|
θn(x1 |
|
Для каждой конкретной выборки - это число, т.е. точка на числовой оси. Определение. Статистикой называется любая функция выборочных элементов (на-
блюдений).
Таким образом, статистическая точечная оценка - это статистика, по значениям которой можно судить о величине θ.
Для одной и той же неизвестной величины θ можно составить бесконечно много различных оценок. Например, в качестве оценки математического ожидания m нормального распределения могут служить выборочное среднее x¯, выборочная медиана med, полусумма квартилей tq, полусумма крайних элементов tR.
В силу многообразия оценок, применяемых для оценивания одной и той же неизвестной величины, возникает задача выбора из них лучшей в определенном смысле. К оценкам предъявляется ряд требований.
69