
- •Введение
- •Памятка студенту
- •Тема 1: Аксиоматический метод
- •1.1 Сущность аксиоматического метода
- •1.2 Геометрия Евклида – первая естественно научная теория
- •1.3 Предмет математики
- •1.4 Место и роль математики в современном мире, мировой культуре и истории, в том числе в гуманитарных науках
- •Тема 2: Элементы теории множеств
- •2.1 Основные понятия теории множеств
- •2.2 Способы задания множеств
- •2.3 Операции над множествами
- •2.3.1 Пересечение множеств
- •2.3.2 Объединение множеств
- •2.3.3 Вычитание множеств
- •2.3.4 Дополнение
- •2.4 Формула Грассмана
- •Тема3: Элементы математической логики
- •3.1 Введение
- •3.2 Высказывания и операции над высказываниями
- •3.3 Формулы логики высказываний
- •Тема 4: Элементы комбинаторики
- •4.1 Введение
- •4.2 Простейшие комбинаторные задачи
- •4.3 Правила умножения и сложения
- •4.3 Выбор нескольких элементов. Размещения. Сочетания
- •Тема 5: Элементы теории вероятностей
- •5.1 Введение
- •5.2 Случайные события и их вероятности
- •1) Найти число n всех возможных исходов данного опыта;
- •2) Принять предположение о равновероятности (равновозможности) всех этих исходов;
- •3) Найти количество n(а) тех исходов опыта, в которых наступает событие а;
- •4) Найти частное , оно и будет равно вероятности событияА.
- •5.3 Операции с вероятностями
- •Если а и в несовместны, то
- •Тема 6: Элементы математической статистики
- •6.1 Случайные величины
- •6.2 Основные понятия математической статистики
- •6.3 Характеристики и параметры статистической совокупности
- •6.4 Статистика – дизайн информации
- •6.4.1 Группировка информации в виде таблиц
- •6.4.2 Графическое представление информации
- •6.4.3 Гистограммы распределения большого объема информации
- •6.5 Числовые характеристики или «паспорт» выборки
- •1) Сложить все результаты, входящие в эту выборку;
- •2) Полученную сумму разделить на количество всех результатов.
- •1) Каждую варианту умножить на ее кратность;
- •2) Сложить все полученные произведения;
- •3) Поделить найденную сумму на сумму всех кратностей.
- •1) Каждую варианту умножить на ее частоту;
- •2) Сложить все полученные произведения.
- •6.6 Экспериментальные данные и вероятности событий
- •Тема 7: Элементы математического моделирования
- •7.1 Два подхода к построению моделей
- •7.2 Три типа моделей
- •7.3 Что такое математическое моделирование?
- •7.4 Основные этапы математического моделирования
- •7.5 Классификация моделей
- •7.6 Примеры математических моделей
- •1) Задача о движении снаряда.
- •2) Задача о баке с наименьшей площадью поверхности.
- •3) Транспортная задача.
- •4) Задача о радиоактивном распаде.
- •5) Задача о коммивояжере.
- •1. Построение модели.
- •6) Задача о нахождении связи между структурой и свойствами веществ.
- •7) Задача об определении надежности электрической цепи.
- •8) Задача о диете.
- •7.7 Выводы
- •Тема 8: Элементы истории математики
- •Вавилония и Египет Вавилония
- •Греческая математика Классическая Греция
- •Александрийский период
- •Упадок Греции
- •Индия и арабы
- •Средние века и Возрождение Средневековая Европа
- •Возрождение
- •Начало современной математики
- •Достижения в алгебре
- •Аналитическая геометрия
- •Математический анализ
- •Современная математика
- •Неевклидова геометрия
- •Математическая строгость
- •Задачи для самостоятельного решения
- •Тема 2: Элементы теории множеств Основной уровень
- •Повышенный уровень
- •Тема 3: Элементы математической логики Основной уровень
- •Повышенный уровень
- •Тема 4: Элементы комбинаторики Основной уровень
- •Повышенный уровень
- •Тема 5: Элементы теории вероятностей Основной уровень
- •Повышенный уровень
- •Тема 6: Элементы математической статистики Основной уровень
- •Повышенный уровень
- •Тема 1: Аксиоматический метод
- •Тема 7: Элементы математического моделирования
- •Тема 8: Элементы истории математики
- •Вопросы к экзамену (зачету)
конфиденциально
корректировки
студентов
7.4 Основные этапы математического моделирования
Построение модели. На этом этапе задается некоторый «нематематический» объект – явление природы, конструкция, экономический план, производственный процесс и т.д. При этом, как правило, четкое описание ситуации затруднено. Сначала выявляются основные особенности явления и связи между ними на качественном уровне. Затем найденные качественные зависимости формулируются на языке математики в виде уравнений, неравенств или их систем, то есть строится математическая модель. Это самая трудная стадия моделирования.
Решение математической задачи, к которой приводит модель. На этом этапе болшое внимание уделяется разработке алгоритмов и численных методов решения задачи на ЭВМ, при помощи которых результат может быть найден с необходимой точностью и за допустимое время.
Интерпретация полученных следствий из математической модели. Следствия, выведенные из модели на языке математики, интерпретируются на языке, принятом в данной области. Другими словами, полученные математические результаты переводятся на язык исходной задачи.
Проверка адекватности модели. На этом этапе выясняется, согласуются ли результаты эксперимента с теоретическими следствиями из модели в пределах определенной точности. То есть проверку адекватности модели выполняют те, кто сформулировал первоначальную задачу.
Модификация модели. На этом этапе происходит либо усложнение модели, чтобы она была более адекватной действительности, либо ее упрощение ради достижения практически приемлемого решения.
7.5 Классификация моделей
Классифицировать модели можно по разным критериям. Например, по характеру решаемых проблем модели могут быть разделены на функциональные и структурные. В первом случае все величины, характеризующие явление или объект, выражаются количественно. При этом одни из них рассматриваются как независимые переменные, а другие – как функции от этих величин. Математическая модель обычно представляет собой систему уравнений разного типа (дифференциальных, алгебраических и т.д.), устанавливающих количественные зависимости между рассматриваемыми величинами. Во втором случае модель характеризует структуру сложного объекта, состоящего из отдельных частей, между которыми существуют определенные связи. Как правило, эти связи не поддаются количественному измерению. Для построения таких моделей удобно использовать теорию графов. Граф – это математический объект, представляющий собой некоторое множество точек (вершин) на плоскости или в пространстве, некоторые из которых соединены линиями (ребрами).
По характеру исходных данных и результатов предсказания модели могут быть разделены на детерминистические и вероятностно-статистические. Модели первого типа дают определенные, однозначные предсказания. Модели второго типа основаны на статистической информации, а предсказания, полученные с их помощью, имеют вероятностный характер.
7.6 Примеры математических моделей
1) Задача о движении снаряда.
Рассмотрим следующую задачу механики.
Снаряд пущен с Земли с начальной скоростью v0 = 30 м/c под углом α = 450 к ее поверхности; требуется найти траекторию его движения и расстояние S между начальной и конечной точкой этой траектории.
1. Построение модели. Пренебрегая размерами снаряда, будем считать его материальной точкой. Введем систему координат хОу, совместив ее начало О с исходной точкой, из которой выпущен снаряд ось х направим горизонтально, а ось у – вертикально (см. рис.).
Тогда,
как это известно из школьного курса
физики, движение снаряда описывается
формулами:
,
,
где t – время, g = 10 м/c2 – ускорение свободного падения. Эти формулы и дают математическую модель поставленной задачи.
Рисунок 7.1
2. Решение математической задачи, к которой приводит модель. Выражая t через х из первого уравнения и подставляя во второе, получим уравнение траектории движения снаряда:
.
Эта
кривая (парабола) пересекает ось х
в двух точках: х1
= 0 (начало
траектории) и х2
=
(место падения снаряда). Подставляя в
полученные формулы заданные значения
v0
и α,
получим ответ:
у = х – 90х2,
S
= 90 м.
3. Интерпретация полученных следствий из математической модели. у = х – 90х2 – уравнение, описывающее траекторию движения, расстояние между конечной и начальной точками S = 90 м.
Отметим, что при построении этой модели использован ряд предположений: например, считается, что Земля плоская, а воздух и вращение Земли не влияют на движение снаряда.