
- •Введение
- •Памятка студенту
- •Тема 1: Аксиоматический метод
- •1.1 Сущность аксиоматического метода
- •1.2 Геометрия Евклида – первая естественно научная теория
- •1.3 Предмет математики
- •1.4 Место и роль математики в современном мире, мировой культуре и истории, в том числе в гуманитарных науках
- •Тема 2: Элементы теории множеств
- •2.1 Основные понятия теории множеств
- •2.2 Способы задания множеств
- •2.3 Операции над множествами
- •2.3.1 Пересечение множеств
- •2.3.2 Объединение множеств
- •2.3.3 Вычитание множеств
- •2.3.4 Дополнение
- •2.4 Формула Грассмана
- •Тема3: Элементы математической логики
- •3.1 Введение
- •3.2 Высказывания и операции над высказываниями
- •3.3 Формулы логики высказываний
- •Тема 4: Элементы комбинаторики
- •4.1 Введение
- •4.2 Простейшие комбинаторные задачи
- •4.3 Правила умножения и сложения
- •4.3 Выбор нескольких элементов. Размещения. Сочетания
- •Тема 5: Элементы теории вероятностей
- •5.1 Введение
- •5.2 Случайные события и их вероятности
- •1) Найти число n всех возможных исходов данного опыта;
- •2) Принять предположение о равновероятности (равновозможности) всех этих исходов;
- •3) Найти количество n(а) тех исходов опыта, в которых наступает событие а;
- •4) Найти частное , оно и будет равно вероятности событияА.
- •5.3 Операции с вероятностями
- •Если а и в несовместны, то
- •Тема 6: Элементы математической статистики
- •6.1 Случайные величины
- •6.2 Основные понятия математической статистики
- •6.3 Характеристики и параметры статистической совокупности
- •6.4 Статистика – дизайн информации
- •6.4.1 Группировка информации в виде таблиц
- •6.4.2 Графическое представление информации
- •6.4.3 Гистограммы распределения большого объема информации
- •6.5 Числовые характеристики или «паспорт» выборки
- •1) Сложить все результаты, входящие в эту выборку;
- •2) Полученную сумму разделить на количество всех результатов.
- •1) Каждую варианту умножить на ее кратность;
- •2) Сложить все полученные произведения;
- •3) Поделить найденную сумму на сумму всех кратностей.
- •1) Каждую варианту умножить на ее частоту;
- •2) Сложить все полученные произведения.
- •6.6 Экспериментальные данные и вероятности событий
- •Тема 7: Элементы математического моделирования
- •7.1 Два подхода к построению моделей
- •7.2 Три типа моделей
- •7.3 Что такое математическое моделирование?
- •7.4 Основные этапы математического моделирования
- •7.5 Классификация моделей
- •7.6 Примеры математических моделей
- •1) Задача о движении снаряда.
- •2) Задача о баке с наименьшей площадью поверхности.
- •3) Транспортная задача.
- •4) Задача о радиоактивном распаде.
- •5) Задача о коммивояжере.
- •1. Построение модели.
- •6) Задача о нахождении связи между структурой и свойствами веществ.
- •7) Задача об определении надежности электрической цепи.
- •8) Задача о диете.
- •7.7 Выводы
- •Тема 8: Элементы истории математики
- •Вавилония и Египет Вавилония
- •Греческая математика Классическая Греция
- •Александрийский период
- •Упадок Греции
- •Индия и арабы
- •Средние века и Возрождение Средневековая Европа
- •Возрождение
- •Начало современной математики
- •Достижения в алгебре
- •Аналитическая геометрия
- •Математический анализ
- •Современная математика
- •Неевклидова геометрия
- •Математическая строгость
- •Задачи для самостоятельного решения
- •Тема 2: Элементы теории множеств Основной уровень
- •Повышенный уровень
- •Тема 3: Элементы математической логики Основной уровень
- •Повышенный уровень
- •Тема 4: Элементы комбинаторики Основной уровень
- •Повышенный уровень
- •Тема 5: Элементы теории вероятностей Основной уровень
- •Повышенный уровень
- •Тема 6: Элементы математической статистики Основной уровень
- •Повышенный уровень
- •Тема 1: Аксиоматический метод
- •Тема 7: Элементы математического моделирования
- •Тема 8: Элементы истории математики
- •Вопросы к экзамену (зачету)
Тема 4: Элементы комбинаторики
Когда кончается игра в три кости,
То проигравший снова их берет.
И мечет их один в унылой злости;
Другого провожает весь народ…
Данте «Божественная комедия»
4.1 Введение
Представителям самых различных специальностей приходится решать задачи, в которых рассматриваются те или иные комбинации, составленные из букв, цифр и иных объектов. Начальнику цеха надо распределить несколько видов работ между имеющимися станками, агроному – разместить посевы сельскохозяйственных культур на нескольких полях, заведующему учебной частью школы – составить расписание уроков, ученому-химику – рассмотреть возможные связи между атомами и молекулами, лингвисту – учесть различные варианты значений букв незнакомого языка и т.д. Область математики, в которой изучаются вопросы о том, сколько различных комбинаций, подчиненных тем или иным условиям, можно составить из заданных объектов, называется комбинаторикой.
Комбинаторика как наука возникла в XVI веке. В жизни тогдашнего общества большое место занимали азартные игры. В карты и кости выигрывались и проигрывались золото и бриллианты, дворцы и имения, породистые кони и дорогие украшения. Широко были распространены всевозможные лотереи. Понятно, что первоначально комбинаторные задачи касались в основном азартных игр – вопросов, сколькими способами можно выбросить данное число очков, бросая две или три кости, или сколькими способами можно получить двух королей в данной карточной игре. Эти и другие проблемы азартных игр явились движущейся силой в развитии комбинаторики и развивавшейся одновременно с ней теории вероятностей.
Одним из первых занялся подсчетом числа различных комбинаций при игре в кости итальянский математик Н. Тарталья. Он составил таблицу, показывающую, сколькими способами могут выпасть r костей. Однако при этом не учитывалось, что одна и та же сумма очков может быть получена разными способами (например, 1 + 3 + 4 = 4 + 2 + 2).
Теоретическое исследование вопросов комбинаторики предприняли в XVII веке французские ученые Б. Паскаль и П. Ферма. Исходным пунктом их исследований тоже были проблемы азартных игр. Особенно большую роль сыграла здесь задача о разделе ставки, которую предложил Паскалю его друг шевалье де Мере, страстный игрок. Проблема состояла в следующем: «матч» в орлянку ведется до шести выигранных партий; он был прерван, когда один игрок выиграл 5 партий, а второй – 4; как разделить ставку? Было ясно, что раздел в отношении 5:4 несправедлив. Применив методы комбинаторики, Паскаль решил задачу в общем случае, когда одному игроку остается до выигрыша r партий, а второму s партий. Другое решение дал Ферма.
Дальнейшее развитие комбинаторики связано с именами Я. Бернулли, Г.Лейбница и Л. Эйлера. Однако и у них основную роль играли приложения к различным играм (лото, солитер и др.). За последние годы комбинаторика переживает период бурного развития, связанного с общим повышением интереса к проблемам дискретной математики. Комбинаторные методы используются при решении транспортных задач, в частности задач по составлению расписаний; для составления планов производства и реализации продукции. Установлены связи между комбинаторикой и задачами линейного программирования, статистики и т.д. Комбинаторика используется для составления и декодирования шифров и для решения других проблем теории информации.