Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
pidruchnikBZhD2011-08.doc
Скачиваний:
531
Добавлен:
19.02.2016
Размер:
5.54 Mб
Скачать
    1. Ідентифікація небезпек

Ідентифікація та оцінка будь яких факторів, в тому числі тих, що можуть бути небезпечними, може здійснюватися органолептичним та інструментальним методом.

У більшості випадків людина виявляє та оцінює небезпеки за допомогою органів чуття: зору, слуху, нюху тощо, а для тваринного світу це взагалі єдине джерело інформації

Інструментальні методи виявлення та оцінки небезпек використовують:

  • для виявлення та оцінки факторів, які не сприймаються нашими органами чуття, наприклад таких, як радіохвилі, іонізуюче випромінювання тощо;

  • якщо виявлення небезпечних факторів відбувається опосередковано і, як правило, пов'язано із загрозою для здоров’я та життя людини, наприклад виявлення наявності електричного струму;

  • якщо інтенсивність факторів виходить за межі можливостей сприйняття людини, наприклад, високих та надзвичайно низьких температур;

  • з метою точної кількісної оцінки факторів;

  • коли необхідний постійна реєстрація показників;

  • у випадках якщо чутливість органів чуття людини недостатн.

Як правило спеціальні прилади використовують професіонали, що цілеспрямовано вивчають та спостерігають ті чи інші небезпечні фактори. Пересічні люди у повсякденному житті абсолютну більшість небезпек виявляють та оцінюють виключно за допомогою органів чуття.

Методи спостереження та контролю за станом середовища життєдіяльності людини

Спектроскопічні методи

Спектроскопічними методами аналізу називають методи, що засновані на взаємодії речовини з електромагнітним випромінюванням. Розрізняють методи атомної та молекулярної спектроскопії. Методи атомної спектроскопії засновані на явищі поглинання (наприклад, атомно-абсорбційний) та виділення (наприклад, емісійна фотометрія полум’я) світла вільними атомами, а також їх люмінесценції (наприклад, атомно-флуоресцентний). Методи оптичної молекулярної спектроскопії в залежності від характеру взаємодії випромінювання з досліджуваною речовиною та способу їх вимірювання поділяють на: абсорбційну спектроскопію, турбідіметрію, люмінесцентний аналіз.

Абсорбційна спектроскопія, тобто аналіз за поглиненим випромінюванням включає:

• спектрофотометричний аналіз - заснований на визначенні спектру поглинання або вимірюванні світлопоглинання при визначеній довжині хвилі, ця спектральна лінія відповідає максимуму кривої поглинання даної речовини;

• фото колориметричний аналіз - заснований на вимірюванні інтенсивності забарвлення досліджуваного розчину або порівнянні її з інтенсивністю забарвлення стандартного розчину з застосуванням спрощених способів монохроматизації (світлофільтри).

Аналіз, заснований на використанні розсіювання світла зваженими частинками (нефелометрія) та поглинання світла в результаті світлорозсіювання (турбідіметрія).

Молекулярний люмінесцентний аналіз (флуориметричний) заснований на вимірюванні інтенсивності випромінювання, що утворюється в результаті поглинання фотонів молекулами.

Електрохімічні методи

В основі електрохімічних методів аналізу та дослідження лежать процеси, що відбуваються на електродному просторі. Відомо два різновиди електрохімічних методів: без проходження електродної реакції (кондуктометрія) та засновані на електродних реакціях - у відсутності струму (потенціометрія) або під струмом (вольтамперометрія, кулонометрія, електрогравіметрія). Всі електрохімічні виміри проводять з використанням електрохімічної чарунки - розчину, в якому знаходяться електроди. Електродів може бути два або три: індикаторний, діючий як датчик, реагуючий на склад розчину або інший фактор впливу, або робочий електрод, якщо під дією струму в електричній чарунці відбувається значні зміни складу речовини, електрод порівняння та іноді допоміжний електрод. Електрод порівняння призначений для створення вимірювального ланцюга та підтримування постійного значення потенціалу індикаторного (робочого) електроду. Допоміжний електрод включають разом з робочим електродом в ланцюг, через який проходить електричний струм. На електродах відбуваються різноманітні фізичні та хімічні процеси, ступінь проходження яких визначають шляхом виміру напруги, сили струму, електричного опору, електричного заряду або рухливості заряджених часток в електричному полі.

Також розрізняють прямі та непрямі електрохімічні методи. В прямих методах використовують функціональну залежність сили струму (потенціалу) від концентрації компоненту, що визначається. В непрямих методах силу струму (потенціал) вимірюють з метою знаходження кінцевої точки титрування компоненту, що визначається певним титрантом, тобто використовують функціональну залежність параметру, що вимірюється від об'єму титранту.

Хроматографічні методи

Хроматографічні методи володіють найбільшим спектром можливостей для контролю забруднення різних об'ємів навколишнього середовища.

Хроматографічні методи засновані на сорбційних процесах - поглинання газів, пари або розчинених речовин твердим або рідким сорбентом. Сорбцію можна провести двояко: в статичних (до встановлення рівноваги) та динамічних умовах. Динамічна сорбція являє собою процес, в якому відбувається направлене переміщення рухливої фази відносно нерухливої. Сутність усіх хроматографічних методів полягає в тому, що речовини, які розділяють разом з рухливою фазою переміщуються через шар нерухливого сорбенту з різною швидкістю за рахунок різної здатності до сорбування. Інакше кажучи, хроматографія - динамічний сорбційний процес розділення сумішей, заснований на розподіленні речовини між двома фазами, одна з яких рухлива, а інша - нерухлива, та зв'язана з багатократним повторюванням актів сорбції - десорбції.

Хроматографічні методи класифікують за наступними ознаками:

- за агрегатним станом суміші, в якій проводять її розділення на компоненти, - газова, рідинна та газорідинна хроматографії;

- за механізмом розділення - адсорбційна, розподільча, іонообмінна, осадочна окислювально-відновна, адсорбційно-комплексо утворююча хроматографія та ін.;

- за формою проведення хроматографічного процесу - колонкова, капілярна, площинна (паперова, тонкошарова та мембранна);

- за способом отримання хроматограф (фронтальний, елюєнтний, витискуючий).

Радіометричний аналіз

Радіометрія - виявлення та вимірювання числа розпадів атомних ядер в радіоактивних джерелах або деякій їх частині за випромінюванням, що виділяють ядра.

Методи реєстрації іонізуючого випромінювання:

Іонізаційний метод заснований на вимірюванні ефекту взаємодії випромінювання з речовиною - іонізації газів, що заповнює реєстраційний прилад. Іонізаційні детектори випромінювання представляють собою заряджений електричний конденсатор (електроди), що знаходяться в герметичній камері, яка заповнена повітрям або газом, для створення в камері електричного поля. Заряджені частки (а або (3), що потрапили до камери детектора, утворюють в ній первинну іонізацію газового середовища; у-кванти спочатку утворюють швидкі електрони в стінці детектора, які потім викликають іонізацію газу в камері. В результаті утворення іонних пар газ стає провідником електричного струму. При відсутності напруги на електродах всі іони, що з'явилися при первинній іонізації, переходять в нейтральні молекули, а при зростанні напруги під дією електричного поля іони починають спрямовано рухатись, тобто виникає іонізаційний струм. Сила струму є кількісною мірою випромінювання та може бути зареєстрована приладом.

Сцинтиляційний метод - в основі сцинтиляційного детектора лежить здатність деяких речовин перетворювати енергію ядерних випромінювань в фотони видимого та ультрафіолетового світла. Механізм цього процесу достатньо простий. Ядерні частки (або вторинні електрони, що утворюються при поглинанні у-квантів) переводять молекули сцинтилятору в збуджений стан. Перехід молекул сцинтилятору в основний стан супроводжується виділенням фотонів в УФ- або видимій області. Кожен окремий спалах, що утворився в результаті проходження ядерної частинки або у-кванту, називаютьсцинтиляцією. Окремі спалахи реєструються фотоелектронним множником, що перетворює світлові імпульси в електричні, які посилюються лінійним або логарифмічним посилювачем. Потім електричні імпульси проходять через дискримінатор, що пропускає імпульси визначеної амплітуди та відсікає «шуми» та потрапляє на реєструючий прилад.

Біоіндикація - це оцінка стану довкілля за реакцією живих організмів. Залежно від властивостей використовуваного біоіндикатора розрізняють специфічну і неспецифічну біоіндикацію. Коли різні антропогенні фактори викликають відповідні реакції, то мова йде про неспецифічну біоіндикацію. Якщо зміни, що відбуваються, можна пов'язати тільки з одним фактором, то йдеться про специфічну біоіндикацію. В якості біоіндикаторів використовують тварин, рослини, бактерії, віруси.

Біоіндикатори - це живі організми, за наявністю, станом і поведінкою яких можна робити висновки про ступінь зміни довкілля, у тому числі про наявність забруднюючих речовин. Живі індикатори мають істотні переваги, вони підсумовують усі без винятку біологічно важливі дані про забруднення, вказують швидкість змін, що відбуваються, шляхи і місця накопичень в екосистемах різних токсикантів, дозволяють судити про ступінь шкідливості певних речовин для живої природи й людини.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]