
- •Курс лекцій з фізики
- •Змістовний модуль 9
- •I. Фізичні основи механіки…………………………………………………….18
- •II. Електростатика…………………………………………………………….....47
- •III. Постійний електричний струм………………………………………..77
- •IV. Електромагнетизм………………………………………………………….…91
- •V. Коливання та хвилі……………………………………………...…122
- •VI. Хвильова оптика……………………………………………….…150
- •VII. Ядерна фізика…………………………………………………….244
- •VIII. Основи молекулярної фізики і термодинаміки……………...261
- •IX. Фізика твердого тіла………………………………………..…283
- •Змістовний модуль № 1
- •Вступна лекція
- •Роль фізики у розвитку техніки та вплив техніки на розвиток фізики
- •I. Фізичні основи механіки
- •Механічний рух полягає в зміні з часом взаємного розташування тіл, або їх частин у просторі.
- •1. Основи кінематики поступального руху
- •В). Циліндрично-полярні координати ρ, φ, z.
- •Якщо траекторія – пряма лінія , то такий рух називають прямолінійним, а якщо крива – криволінійним. Найпростішим прикладом криволінійного руху є рух матаеріальної точки по колу :
- •2. Основи кінематики обертального руху
- •3. Абсолютні і відносні швидкості та прискорення
- •І закон Ньютона
- •Іі закон Ньютона
- •III закон Ньютона
- •5. Закон збереження імпульсу
- •6. Рух тіла із змінною масою. Реактивний рух
- •Імпульс системи
- •Одержана формула виражає закон руху центра мас
- •7.1. Сили інерції
- •Приклади руху тіл у нісв
- •8.1 Момент сили та момент імпульса
- •8.2 Рівняння моментів
- •8.3 Момент інерції тіла відносно осі обертання
- •8.4 Рівняння динаміки обертального руху
- •8.5 Закон збереження момента імпульса
- •9. Пружні напруження. Закон Гука. Деформація стрижнів
- •10. Робота. Енергія
- •10.1 Кінетична енергія з найдемо роботу , яку виконує сила при переміщенні матеріальної точки масою m із положення 1 в положення 2.
- •10.3 Закон збереження механічної енергії
- •10.4 Кінетична енергія тіла при обертальному русі
- •11. Рівняння руху та рівноваги твердого тіла
- •Іі. Електростатика
- •15. Закон збереження електричного заряду. Електричне поле. Напруженість електричного поля
- •16. Потік вектора напруженості.
- •17. Теорема Остроградського-Ґаусса
- •18. Застосування теореми Остроградського-Ґаусса до розрахунку напруженості електростатичних полів
- •20. Напруженість як градієнт потенціалу Розглянемо випадок переміщення одиничного додатнього точкового заряду q iз точки 1 в точку 2 вздовж осі X.
- •17. Провідники у електростатичному полі
- •Явище перерозподілу поверхневих зарядів на провіднику у зовнішньому електростатичному полі називається електростатичною індукцією, а перерозподілені заряди – індукованими зарядами.
- •17.1 Електрична ємність
- •17.2 Взаємна електроємність
- •18. Енергія зарядженого відокремленого провідника, конденсатора. Енергія електростатичного поля. Об’ємна густина енергії
- •19. Діелектрики у електростатичному полі
- •19.1 Типи діелектриків. Електронна і орієнтаційна поляризація
- •19.2 Неполярні діелектрики. Електронна поляризація
- •19.3 Полярні діелектрики. Дипольна, або орієнтаційна поляризація
- •19.4 Іонні діелектрики. Іонна поляризація
- •20. Механічні ефекти в діелектриках. Електрострикція та п’єзоефект. Сегнотелектрики.
- •22.Закон Ома у диференціальній формі
- •23. Закон Джоуля-Лєнца
- •24. Закон Ома у інтегральній формі
- •25. Розрахунок параметрів електричних кіл
- •26. Електричний струм у вакуумі
- •27. Робота виходу електронів з металу. Контактна різниця потенціалів
- •28. Термоелектричні явища
- •29. Електричний струм у газах
- •29.1. Типи газових розрядів:
- •2. Взаємодія між постійним електричним струмом і магнітною стрілкою
- •Якщо контур зі струмом повернути на 90° від рівноважного положення, то на нього буде діяти максимальний обертальний момент Мmax.
- •31. Закон Біо-Савара-Лапласа
- •32. Закон повного струму для магнітного поля у вакуумі. Вихровий характер магнітного поля
- •Якщо контур не охоплює провідник зі струмом, то
- •33. Cила Лоренца
- •34. Контур зі струмом у магнітному колі
- •35. Магнітний потік. Теорема Остроградського-Ґаусса
- •36. Робота переміщення провідника і контуру зі струмом у магнітному полі
- •Матеріал для самостійної роботи
- •37. Магнітні моменти атомів. Намагніченість. Атоми в магнітному полі
- •39. Магнітне поле в речовині. Закон повного струму для магнітного поля в речовині. Напруженість магнітного поля
- •40. Феромагнетики
- •41. Явище електромагнітної індукції. Закон Ленца. Закон електромагнітної індукції (закон Фарадея)
- •42. Явище самоіндукції. Індуктивність
- •43. Явище взаємної індукції
- •44. Енергія магнітного поля
- •46. Вільні електромагнітні коливання у коливальному контурі
- •Якщо конденсатор зарядити (надати заряд q), а потім замкнути коло ключем к, то він починає розряджатись.
- •Тоді сила струму змінюється у контурі за законом
- •47. Диференціальне рівняння згасаючих коливань і його розв’язок
- •Графік залежності х від часу наведено на рис.1
- •48. Диференціальне рівняння вимушених коливань і його розв’язок. Резонанс
- •49. Вимушені коливання у електромагнітному коливальному контурі. Кола змінного струму. Закон Ома
- •50. Резонанс напруг
- •51. Розгалуження змінних струмів. Резонанс струму
- •52. Робота та потужність змінного струму
- •53. Утворення хвиль в пружному середовищі. Поздовжні і поперечні хвилі. Рівняння біжучої хвилі
- •54. Інтерференція хвиль. Рівняння стоячої хвилі
- •55.Звукові хвилі та їх властивості. Ефект Допплера.
- •Ефект Допплера
- •56. Основи теорії Максвелла для електромагнітного поля. Струм зміщення
- •57. Рівняння Максвелла для електромагнітного поля
- •58. Основні властивості електромагнітних хвиль
- •Змістовний модуль 8
- •Vіii. Основи молекулярної фізики і термодинаміки
- •99. Статистичний і термодинамічний
- •100. Рівняння молекулярно-кінетичної теорії ідеального газу для тиску
- •101. Середня кінетична енергія
- •102. Розподіл Максвелла молекул
- •103. Барометрична формула. Розподіл Больцмана частинок у зовнішньому потенціальному полі
- •104. Закон рівномірного розподілу енергії за ступенями вільності молекул
- •105. Перший закон термодинаміки. Робота газу при зміні його об'єму
- •106. Теплоємність. Класична молекулярно-кінетична теорія теплоємностей ідеального газу та її обмеженість.
- •107. Застосування першого закону термодинаміки до ізопроцесів
- •108. Адіабатний процес. Застосування першого закону термодинаміки до адіабатного процесу ідеального газу
- •109. Коловий процес. Теплові двигуни і холодильні машини. Оборотні і необоротні процеси
- •110. Цикл Карно і його коефіцієнт корисної дії для ідеального газу
- •111. Другий закон термодинаміки
- •112. Ентропія. Ентропія ідеального газу
- •113. Теорема Нернста та її наслідки
- •Іх. Фізика твердого тіла
- •114. Поняття про квантові статистики Бозе – Ейнштейна і Фермі - Дірака
- •115. Розподіл електронів провідності в металі за енергіями. Енергія Фермі
- •116. Енергетичні зони в кристалах
- •117. Розподіл електронів по енергетичних зонах. Валентна зона і зона провідності. Метали, діелектрики і напівпровідники
- •118. Власна провідність напівпровідників
- •119. Домішкова провідність напівпровідників
- •121. Люмінесценція твердих тіл
- •123.Рідкі кристали
110. Цикл Карно і його коефіцієнт корисної дії для ідеального газу
Цикл Карно – це цикл ідеальної теплової машини. В ній відсутні втрати на теплопровідність, теплове випромінювання, тертя і т.п.
Цикл Карно встановлює основні співвідношення процесу переходу теплоти від одного тіла до іншого з перетворенням цієї теплоти.
Розглянемо коловий процес, в результаті якого тепло, відняте від якогось тіла, можна перетворити в роботу і притому якнайкраще.
Карно довів теорему: із всіх періодично діючих теплових машин, що мають однакові температури нагрівачів і холодильників, найбільший ККД мають оборотні машини: при цьому ККД оборотних машин, що працюють при однакових температурах нагрівачів і холодильників, дорівнюють один одному і не залежать від конструкції машини.
Цикл Карно складається з двох ізотерм і двох адіабат .
І
зотермічне
розширення і стиск задані, відповідно,
кривими 1-2 і 3-4, адіабатне розширення
і стиск-, відповідно, кривими 2-3 і 4-1. Для
виконання циклу Карно необхідні термостат
з температурою Т1
(нагрівник) і термостат з температурою
Т2
(холодильник), причому Т1>Т2.
При проходженні адіабатних ділянок
циклу система повинна бути термоізольованою
від навколишнього середовища.
Визначимо ККД циклу Карно. При ізотермічному процесі U=0 і робота розширення газу А12 дорівнює кількості теплоти Q1, що отримав газ від нагрівника:
При адіабатному розширенні робота виконується за рахунок зміни внутрішньої енергії:
При ізотермічному стисканні газу виконується робота А34 і газ віддає холодильнику кількість теплоти Q2:
Робота адіабатного стискання:
В результаті колового циклу виконується робота
А = А12 + А23 + А34 + А41 = Q1 + A23 - Q2 - A23 = Q1 - Q2.
Термічний ККД циклу Карно
Використаємо рівняння адіабат 2-3 і 4-1:
Звідси
Тоді,
і
Для циклу Карно ККД визначається лише температурами нагрівника і холодильника.
Лекція №41
111. Другий закон термодинаміки
Другий закон термодинаміки встановлює напрямок перебігу і характер процесів, що відбуваються в природі.
Згідно із Клаузіусом, який дав одне з перших формулювань другого закона, теплота ніколи не може переходити сама собою від тіл з нижчою температурою до тіл з вищою температурою.
Це означає, що для такого переходу: теплоти потрібна затрата роботи зовнішнього джерела, що здійснюється в холодильній машині.
Фізичний зміст другого закону найбільш зрозуміло розкриваєгься у формулюванні Планка: неможливо побудувати таку періодично діючу теплову машину, яка, отримавши ззовні деяку кількість теплоти при довільній температурі, цілком перетворювала би її в механічну роботу і при цьому поверталась би точно у вихідний стан.
Отже, в довільній тепловій машині перетворюється в роботу лише частина отриманої від нагрівника кількість теплоти, тобто A = Q1 - Q2. Теплота Q2 не використовується в машині і розсіюється в навколишньому середовищі. Величина Q2 завжди досить велика, тому коефіцієнт корисної дії теплової машини =Q1 - Q2/Q1 завжди значно менший від одиниці.
Із формули ККД теплової машини, яка працює за циклом Карно,
випливає, що Q2 дорівнювала би нулеві лише в тому випадку, якби температуру робочого тіла можна було би довести до температури абсолютного нуля, яку повинен мати холодильник. ККД реальних теплових машин завжди менший від одиниці.
Вираз для ККД теплової машини, яка працює за циклом Карно, теж є одним з формулювань другого закону:
коефіцієнт корисної дії ідеальної теплової машини визначається лише температурами нагрівника і холодильника.
Кельвін сформулював другий закон термодинаміки в такому вигляді:
неможливо побудувати теплову машину, яка перетворювала би в роботу теплоту найбільш холодного з тіл, що є в системі.
Другий закон термодинаміки вказуе на необоротність процесу перетворення однієї форми передачі енергії - роботи - у другу форму передачі енергії - теплоту. Він стверджує, що процес переходу впорядкованого руху тіла як цілого в невпорядкований рух його частинок є необоротним. Упорядкований рух може переходити в неупорядкований без будь-яких додаткових процесів, як це відбувається, наприклад, при внутрішньому терті. Перехід же невпорядкованого руху частинок у впорядкований рух тіл можливий лише при умові, що він супроводжується будь-яким компенсуючим процесом.
У тепловій машині, що працює за прямим циклом, виконується робота за рахунок підведеної від нагрівника теплоти. Але при цьому частина отриманої теплоти передається холодильнику. Отже, робота за цикл не еквівалентна до підведеної теплоти.
У холодильній машині теплота передається віл холодного тіла до гарячого. Проте для здійснення такого процесу необхідний компенсуючий процес виконання роботи зовнішніми силами.