Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
прикладная геодезия.doc
Скачиваний:
671
Добавлен:
02.05.2015
Размер:
28.23 Mб
Скачать

2.1.1.9. Разбивка поперечных профилей (строительных поперечников)

Для выполнения земляных работ производят детальную разбивку земляного полотна или разбивку строительного поперечника.

Разбивка состоит в обозначении на местности всех характерных точек полотна дороги.

На прямолинейном участке поперечники разбивают через 20-30 м, а также на перегибах местности. Для этого в створе оси трассы разбивают плюсовые точки, осевые точки поперечников (рис. 181). Разбивают поперечники вправо и влево от осевых точек.

Рисунок 181 - Разбивка поперечников

На круговых кривых (закруглениях трассы) поперечники разбивают через 10-20 метров в зависимости от радиуса кривой (рис. 182). Поперечники должны располагаться по направлению центральной кривой, т.е. перпендикулярно касательной к кривой в точке поперечника. Направление на центр задается по биссектрисе угла .

Рисунок 182 - Определение направления поперечного профиля на кривой

В осевой точке кривой измеряют угол между хордами, соединяющими эту точку с двумя соседними. Делят уголна две части и строят биссектрису. На этой биссектрисе разбивают поперечник.

Разбивка поперечников в насыпи.

При разбивке поперечников в насыпи (рис.183-184) на местности закрепляют положение осевой точки О’, проекции бровок А’, А1’ и подошвы насыпи С, C’. Если поперечный уклон местности не больше 3-4 градусов, то можно принять:

где В - проектная ширина дорожного полотна,

h - высота насыпи,

1:m - крутизна (уклон) откоса.

а) на равнинной местности:

Рисунок 183 - Разбивка насыпи в равнинной местности

На местности от осевой точки О’ откладывают величину l и получают точку подошвы насыпи:

б) на наклонной местности:

Рисунок 184 – Разбивка поперечника в насыпи на наклонной местности

При уклоне 6, l1и l2можно вычислить по упрощенным формулам:

Разбивка поперечников в выемке

а) на равнинной местности:

.

Рисунок 185 – Разбивка поперечника в выемке на равнинной местности

На поверхности фиксируют осевую точку О’

Зная величину h, вычисляют величину l:

.

Откладывают вычисленную величину l на поверхности и получают точку Б.

Зная ширину дороги и обочины на местности, можно получить точку A’.

На первом этапе поперечные профили выемки задаются в виде траншеи Б1А1АБ. В дальнейшем, при отделке земляного полотна, делают отделки под земляное корыто и обочины.

б) на наклонной местности (рис. 186):

Рисунок 20 – Разбивка выемки на наклонной местности

Вычисления выполняются по следующим формулам:

2.1.1. Геодезическое обеспечение проектирования и строительства автомобильных и железных дорог

2.1.2.1. Дорожные изыскания

Различают следующую классификацию дорог в зависимости от значения в общей транспортной сети и интенсивности движения: автомобильные дороги и железные дороги.

Автомобильные дороги в свою очередь разделяют на 5 категорий:

  • I - II категории - это автомагистрали общегосударственного и республиканского значения, связывающие важнейшие экономические районы страны и крупные центры. На дорогах I категории суточная интенсивность движения составляет свыше 6 тысяч автомобилей при основной расчетной скорости 150 км/ч, они имеют по четыре и более полос движения с разделительной полосой между разными направлениями движения. На дорогах II категории суточная интенсивность движения принимается от 3 до 6 тысяч автомобилей при расчетной скорости 120 км/ч и двух полосах движения.

  • Дороги III категории - республиканского и областного значения при интенсивности движения 1-3 тыс. автомобилей и основной расчетной скорости 100 км/ч.

  • Дороги IV-V категорий - это автодороги местного значения с небольшой интенсивностью движения и основной расчетной скоростью 80-60 км/ч.

Железные дороги подразделяются на три категории.

  • К дорогам I категории относят железнодорожные магистрали первостепенного значения, обеспечивающие основные общегосударственные транспортные связи внутри страны и с зарубежными странами, наиболее грузонапряженные железные дороги с большими размерами перевозок (более 5 млн.т*км/(км в год)) и большой интенсивностью пассажирских перевозок (10 и более пар поездов дальнего следования в сутки при высоких скоростях движения 150 км/ч).

  • К дорогам II категории относят железнодорожные линии, обеспечивающие межрайонные грузовые и пассажирские перевозки, дороги со значительной грузонапряженностью и темпами роста перевозок при скоростях движения 120-100 км/ч.

  • Дороги III категории - это ж/д линии и ветки местного значения с небольшими размерами перевозок ( с грузонапряженностью до 2-3 млн.т*км/(км в год) и пассажирским движением до 3 пар поездов в сутки).

Технические условия проектирования дорог.

Основное требование, предъявляемое к дорожным трассам, - это плавность и безопасность движения с заданными скоростями. В связи с этим на автомобильных и железных дорогах строго регламентируются максимальные руководящие уклоны и минимальные радиусы кривых (табл. 19).

На кривых небольших радиусов предельно допустимый уклон смягчают (уменьшают). На железных дорогах это смягчение уклона, выраженное в долях, определяется по формуле:

где и K - соответственно угол поворота в градусах и длина кривой в метрах.

Так как , где R - радиус кривой в метрах,-радиан в градусах (), то:

Таблица19

П А Р А М Е Т Р Ы

Категория дорог

I

II

III

IV

V

АВТОМОБИЛЬНЫЕ ДОРОГИ

Наибольшие продольные уклоны (основные), %о

Наименьшие радиусы кривых в плане (основные), м

Наименьшие радиусы вертикальных кривых (основные), м:

выпуклых

вогнутых

30

1000

25000

8000

40

600

15000

5000

50

400

10000

3000

60

250

5000

2000

70

125

2500

1500

ЖЕЛЕЗНЫЕ ДОРОГИ

Руководящие уклоны, %о

Радиусы горизонтальных кривых

м:

наибольшие

наименьшие рекомендуемые

Радиусы вертикальных кривых,

рекомендуемые

15

4000

1200

10000

15

4000

800

10000

20

4000

600

5000

-

-

-

-

-

-

-

-

Например, при руководящем уклоне iр=20%o максимально допустимый уклон на кривой с радиусом R= 700 м следующий:

o

Площадки под станции и разъезды, а также крупные парки путей размещают, как правило, на прямых горизонтальных участках и только в трудных условиях допускают размещение разъездов и промежуточных станций на участках с уклонами, не превышающими 20 %о. В последнем случае кривые должны быть обращены в одну сторону, а радиусы кривизны составлять не менее 1000 м для магистральных дорог и 600 м для линий местного значения.

Очень часто применяется ландшафтное проектирование дорог - плавное сопряжение элементов трассы и ее гармоничное сочетание с окружающей средой с учетом условий по охране природы.

Для ландшафтного проектирования в процессе изысканий производят дополнительную аэрофотосъемку, наземную стереосъемку сложных участков и другие работы, связанные с построением перспективы местности и ландшафтно-архитектурного плана.

При проектировании дорог обязательно нужно предусмотреть создание вдоль дорог постоянное геодезическое обоснование надлежащей точности и плотности. Такое обоснование следует развивать в период предпостроечных изысканий в виде теодолитно-нивелирных ходов повышенной точности. В плане предельные ошибки ходов не должны превышать 1:5000; по высоте невязки должны лежать в пределах:

,

где L - длина хода в км.

Технологическая схема дорожных изысканий:

1. Рекогносцировочные допроектные изыскания для технико-экономического обоснования проекта.

А) Дорожно-экономические изыскания:

  • изучение производительных сил района изысканий; выявление районов тяготения дороги, которые будут реализовать свои транспортные связи через проектируемую трассу;

  • определение на мелкомасштабных картах наиболее экономичного варианта трассы; примерные подсчеты интенсивности движения на ней;

  • расчет примерных технических характеристик дороги (категория, число полос движения для автодороги и путей для железной дороги, расчетная скорость движения и т.д.);

  • изучение условий по охране окружающей среды.

Б) Выбор основного направления дороги:

  • -камеральное трассирование вариантов по топографическим картам (М 1:50000,1:25000);

  • -составление на сложные участки фотосхем и фотопланов по имеющимся фотоматериалам ;

  • -изучение материалов геологической съемки и разведки прежних лет;

  • -обзорная аэрофотосъемка в масштабе 1:30000-1:40000 больших переходов и сложных участков;

  • -сравнение вариантов;

  • -составление технического задания на проектирование дороги.

2. Детальные проектные изыскания для разработки технического проекта дороги и всех сооружений на ней.

А)Выбор оптимального варианта дороги:

  • -аэрофотосъемка полосы вариантов в масштабе 1:10000-1:15000. Перспективная и панорамная аэрофотосъемка для ландшафтного проектирования;

  • -построение на полосе трассирования плановой и высотной геодезической основы. Привязка аэрофотоснимков. Топографическое дешифрирование;

  • -инженерно-геологическая съемка и дешифрирование;

  • -развитие аналитической фототриангуляции;

  • -составление инженерно-геологических фотокарт и ландшафтно-архитектурных карт в масштабе аэрофотосъемки;

  • -камеральное трассирование и проектирование вариантов. Выбор оптимальной трассы.

Б) Полевое обследование трассы и согласование:

  • -вынесение по контурам оптимальной трассы в натуру;

  • -крупномасштабные стереотопографическая и топографическая съемки площадок, переходов, станций, пересечений, сложных участков;

  • -крупномасштабная инженерно-геологическая съемка трассы. Гидрометрические работы на мостовых переходах, сбор сведений для расчета искусственных сооружений;

  • -согласование трассы с землепользователями и заинтересованными организациями.

3. Предпостроечные изыскания для составления рабочих чертежей.

А) Детальная разбивка трассы на местности:

  • полевое трассирование с разбивкой пикетажа и нивелированием;

  • дополнительная съемка в масштабе 1:500 - 1:1000 с высотой сечения рельефа 0.5 м мостовых переходов и сложных мест;

  • закрепление главных точек трассы.

Б) Построение постоянного геодезического обоснования вдоль трассы:

  • рекогносцировка хода на расстоянии 30-50 м от трассы и закрепление пунктов совмещенными ж/б знаками через 400-500 м;

  • проложение теодолитно-нивелирной магистрали повышенной точности.

В) Разведочные работы:

  • инженерно-геологическая разведка трассы;

  • геодезическая привязка геологоразведочных выработок и гидростворов;

  • детальная разведка карьеров строительных материалов, съемка карьеров.

Г) Камеральная обработка материалов. Составление плана и профилей.

2.1.2.2. Восстановление дорожной трассы

Перед началом строительных работ выполняют восстановление трассы:

  • инструментальное восстановление пикетажа с контрольным промером линий и углов и с детальной разбивкой кривых;

  • контрольное нивелирование по пикетажу с дополнительным сгущением сети рабочих реперов;

  • проверка осей искусственных сооружений;

  • закрепление трассы и осей искусственных сооружений с выносом знаков крепления за пределы зоны земляных работ.

При восстановлении трассы может быть проведено некоторое ее корректирование и улучшение расположения на местности для уменьшения объема земляных работ и улучшения устойчивости отдельных сооружений.

Все изменения, внесенные при восстановлении трассы, передаются в проектную организацию.

Точность геодезических работ при восстановлении трассы должна быть не ниже точности этих работ на стадии детальных изысканий.

При восстановлении трассы производится отвод и закрепление на местности полосы отчуждения.

2.1.2.3. Разбивка земляного полотна

Автодорожное полотно состоит из проезжей части, обочин, откосов и кюветов (рис.1). Ширина проезжей части может быть 6 -15 м в зависимости от категории дороги. Для укрепления проезжей части с обеих сторон ее устраивают обочины шириной 2 - 3.75 м. К обочинам примыкают откосы. Линия, отделяющая обочины от откосов, называется бровкой дорожного полотна. Проектные высоты даются в продольном профиле по бровке.

Рисунок 188 - Дорожное полотно

2.1.2.4. Камеральное трассирование

Под трассой понимается пространственное положение взаимосвязанной с рельефом местности продольной оси проектируемого линейного сооружения.

Оптимальной для данного участка местности считается трасса, которая отвечает следующим условиям:

  • обеспечивает строительство и надежную эксплуатацию линейного сооружения с заданными характеристиками;

  • удовлетворяет ограничениям, накладываемым нормами проектирования;

  • имеет технико-экономические показатели, оптимизирующие значение численного критерия эффективности.

Трассирование - решение технико-экономической задачи по выбору оптимальной трассы между опорными точками на участке местности или его модели при заданном уравнении поверхности земли f(x, y, H) = 0, инженерно-геологических, гидрологических, природоохранных и других условиях.

В результате камерального трассирования получают план трассы(проекцию трассы на горизонтальную плоскость) ипродольный профиль(вертикальный разрез по оси трассы).

На плане трасса состоит из прямых участков, сопряженных между собой круговыми кривыми (рис. 189).

Рисунок 189 - Трасса в плане

В продольном профиле трасса состоит из линий поперечного уклона при необходимом соединении между собой вертикальными круговыми кривыми (рис.190).

Рисунок 190 - Продольный профиль трассы

При проектировании стремятся проложить наиболее короткий вариант трассы между заданными точками начала и конца трассы и с уклонами, не превышающими предельные значения для данной категории дорог.

В зависимости от условий местности камеральное трассирование выполняют способом попыток или способом построения линий с заданными уклонами.

Способ попытокприменяют в основном для равнинной местности. По намеченной по карте трассе составляют продольный профиль с проектной красной линией. Анализируя профиль, выявляют места, в которых трассу целесообразно сместить вправо или влево, чтобы отметки местности ближе подходили к проектным отметкам. Эти участки трассы вновь трассируют и составляют улучшенный вариант трассы.

Расположение трассы в равнинной местности определяется контуром препятствий, т.е. расположением населенных пунктов, препятствующих проложению трассы. Если средний уклон местности меньше допустимого, то в высотном отношении трассу ведут вольной кривой, на встречающихся препятствиях делаются углы поворота для обхода его.

Для проектирования более коротких трасс придерживаются следующих условий:

  • трассирование выполняют напрямую - от препятствия к препятствию, т.е. выбирают углы поворота против препятствий и располагают препятствие внутри угла поворота;

  • угол поворота трассы стремятся иметь не более 30 градусов, т.к. такие углы незначительно удлиняют трассу;

  • радиус кривых выбирают по возможности большим;

  • при пересечении оврагов к тальвегу не спускаются, а переходят сразу на другую сторону, засекая одноименные горизонтали;

  • в местах, где расстояние между горизонталями больше, чем проектная величина заложения, направление выбирают свободно;

  • пересечение рек, магистралей выполняют под углом 90 градусов;

  • необходимо обходить крупные населенные пункты, территории горных разработок, лесные массивы, c/х угодья и т.д.

В отличии от проектирования на равнинной местности, направление трассы в горной или резко пересеченной местности определяется ее рельефом, т.к. уклоны в данном случае значительно превосходят уклоны трассы.

Построение линий заданного уклона(ход раствором циркуля) в случае, если уклон местности превосходит уклон трассы, выполняется следующим образом:

  • вычисляют величину заложения между горизонталями для заданного уклона:

,

где h - высота сечения рельефа;

  • если трассу провести по линии нулевых работ , то достаточно раствором циркуля, равным а из начальной точки трассы засекать ближайшие горизонтали в направлении к конечной точки трассы до тех пор, пока не прейдете к конечной точке трассы (рис. 191):

Рисунок 191 - “Ход раствором циркуля”

В результате таких построений получится очень много углов поворота, что приводит к потребности спрямить трассу.

Пусть l - длина трассы фактическая, l’ - длина, рассчитанная по допустимому уклону (максимальная длина трассы ), тогда:

В зависимости от удлинения различают следующие виды трасс:

а) извилина, т.е. S - образная трасса (рис. 192):

Рисунок 192.

б) заход трассы в боковую долину (рис. 193):

Рисунок 193.

в) петля (рис. 194):

Рисунок 194.

г) спираль (рис. 195):

Рисунок 195 – Виды трасс

На спрямленной трассе по измеренным углам поворота и выбранным радиусам закруглений размечают главные точки кривых (вписывают кривые) и прямые вставки, разбивают пикетаж, по горизонталям определяют “черные” отметки пикетажа и характерных точек перегиба местности. Составляют продольный профиль трассы, затем проводят проектную линию трассы (красную) и в местах, где получены большие объемы земляных работ, трассу корректируют.