
- •Министерство образования и науки рф
- •1. Основные сведения из инженерной геодезии
- •1.1. Предмет геодезии
- •1.2. Форма и размеры Земли
- •1.3. Системы координат в геодезии
- •1.4. Ориентирование
- •1.5. Топографические карты и планы
- •1.6. Номенклатура топографических планов и карт
- •1.7. Содержание топографических планов и карт
- •1.8. Элементы теории ошибок измерений
- •1.8.1. Измерения и их ошибки
- •1.8.2. Арифметическое среднее
- •1.8.3. Средняя квадратическая ошибка измерений
- •1.8.4. Средняя квадратическая ошибка функций
- •1.8.5. Понятие об обработке многократных неравноточных
- •1.9. Геодезические сети
- •1.10. Основные геодезические задачи
- •2. Угловые измерения, теодолиты
- •2.1. Принципы измерения горизонтальных и
- •2.2. Зрительные трубы геодезических приборов
- •2. 3. Уровни геодезических приборов
- •2.4. Отсчетные устройства геодезических приборов
- •2.5. Приспособления для центрирования приборов
- •2.6. Типы теодолитов
- •2.7. Установка теодолита в рабочее положение
- •2.8. Измерение горизонтальных углов
- •2.9. Измерение вертикальных углов
- •2.10. Измерение теодолитом магнитных и истинных
- •3. Линейные измерения
- •3.1. Измерение длин линий лентами и рулетками
- •3.2. Оптические дальномеры
- •3.3. Свето - и радиодальномеры
- •4. Нивелирование
- •4.1. Сущность и методы нивелирования
- •4.2. Классификация и устройство нивелиров
- •4.3. Нивелирные рейки
- •4.4. Лазерные и кодовые приборы для геометрического
- •4.5. Точность геометрического нивелирования
- •4.6. Производство технического нивелирования
- •4.7. Тригонометрическое нивелирование
- •5. Топографические съемки
- •5. 1. Сущность и виды топографических съемок
- •5.2. Выбор масштаба и высоты сечения рельефа при
- •6. Теодолитная и тахеометрическая съемки
- •6.1. Теодолитная съемка
- •6.2. Тахеометрическая съемка
- •6.3. Производство тахеометрической съемки
- •6.3.1. Полевые работы
- •6.3.2. Камеральные работы
- •7. Нивелирование поверхности
- •8. Наземно-космическая съемка местности
- •8.1. Общее понятие о системах спутниковой навигации
- •8.2. Принципы определения координат точек местности с
- •8.3. Измерение расстояний до навигационных спутников
- •По трем точным измерениям.
- •По трем неточным измерениям: 1 — точное местоположение точки; 2,3,4 — варианты ошибочного определения местоположения точки.
- •8.4. Приемники «gps»
- •8.5. Организация геодезических работ с использованием
- •8.6. Использование gps – технологий при инженерных
- •8.7. Наземно-космическая топографическая съемка
- •9. Батиметрическая съемка
- •9.1. Общие сведения
- •9.2. Основные принципы эхолокации
- •9.3. Регистрация уровня воды
- •9. 4. Плановое координирование батиметрических съемок
- •10. Цифровые и математические модели
- •10.1. Виды цифровых моделей местности
- •10.2. Методы построения цифровых моделей местности и
- •10.3. Математические модели местности
- •11. Проектная документация и инженерно-
- •11.1. Общие сведения о проектной документации для
- •11.2. Инженерно-геодезические изыскания
- •11.3. Некоторые инженерно-геодезические задачи,
- •12.1. Общие сведения
- •12.2. Элементы автомобильных дорог
- •12.3. Геодезические работы при полевом трассировании
- •12.4. Разбивка земляного полотна дороги
- •13. Разбивочные работы на строительных
- •13.1. Общие сведения
- •13.2. Основные элементы геодезических разбивочных
- •13.3. Способы разбивки сооружений
- •13.4. План организации рельефа
- •13.5. Геодезическая строительная сетка и обноска
- •14. Геодезические работы при строительстве
- •14.1. Геодезические работы при возведении подземной
- •14.2. Построение разбивочной основы на исходном
- •14.3. Проектирование осей и передача отметок на
- •14.4. Геодезические работы при монтаже колонн и укладке
- •14.5. Геодезические работы при строительстве
- •14.6. Геодезические работы при строительстве зданий в
- •15. Геодезические работы при строительстве
- •16. Геодезические работы при строительстве
- •16.1. Топографическая основа для проектирования
- •16.2. Вынос в натуру трасс подземных трубопроводов
- •16.3. Геодезические работы при прокладке подземных
- •17. Особенности геодезических работ в
- •17.1. Топографическая основа планировки и застройки
- •17.2. Геодезические опорные сети на городских
- •17.3. Особенности топосъемки застроенных территорий
- •17.4. Вынос в натуру красных линий
- •17.5. Съемка существующих подземных коммуникаций
- •17.6. Вынос в натуру и определение границ
- •18. Исполнительные съемки
- •18.1. Назначение и методы исполнительных съемок
- •18.2. Исполнительные съемки в строительстве
- •18.3. Составление исполнительных генеральных планов
- •19. Наблюдения за деформациями сооружений
- •19.1. Виды деформаций и причины их возникновения
- •19.2. Задачи и организация наблюдений
- •19.3. Точность и периодичность наблюдений
- •19.4. Основные типы геодезических деформационных
- •19.5. Наблюдения за осадками сооружений
- •19.6. Наблюдения за горизонтальными смещениями
- •19.7. Наблюдения за кренами, трещинами и оползнями
- •19.8. Обработка и анализ результатов наблюдений
- •20. Организация инженерно-геодезических работ,
- •20.1. Организация геодезических работ в строительстве
- •20.2. Стандартизация в инженерно-геодезических работах
- •Часть 1. «Организация, управление, экономика». Состоит из 12 групп.
- •20.3. Техника безопасности при выполнении инженерно-
- •Список контрольных вопросов общие вопросы инженерной геодезии (разделы 1 – 10)
- •Геодезические работы в строительстве (разделы 11 – 20)
- •Содержание
8.4. Приемники «gps»
Все, получившие распространение в практике производства инженерных работ приемники, можно условно разделить на две обширные группы.
К первой группе относят приемники, работающие по принципу последовательного (поочередного) отслеживания и измерений расстояний до навигационных спутников рабочего созвездия.
Ко второй группе — приемники, отслеживающие и обеспечивающие измерение расстояний одновременно до четырех и более навигационных спутников, т. е. ведущие измерения параллельно.
Внутри каждой из этих двух групп существует большое разнообразие GPS-приемников различного назначения и конструктивных особенностей.
Одноканальные приемники, наиболее экономичные и дешевые, используют в тех случаях, когда не требуется вести измерения «в режиме реального времени», т. е. непрерывно и не требуется измерения скорости объекта, на котором установлен приемник. Прежде чем вычислить координаты местоположения, одноканальный приемник должен выполнить последовательно четыре отдельных измерения до четырех различных спутников. Вся операция по определению координат одной точки может занимать от 2 до 30 с, что во многих случаях может оказаться вполне приемлемым.
Тем не менее, одноканальным приемникам свойственны некоторые недостатки:
- с помощью такого приемника нельзя производить измерения с подвижного объекта (например, с автомобиля при кинематической съемке плана и продольного профиля автомобильной дороги);
- в ходе каждого цикла из четырех измерений приемник должен оставаться неподвижным;
- работа одноканальных приемников по определению координат прерывается в моменты, когда навигационные спутники передают свои информационные сообщения, прием и расшифровка каждого из которых занимает около 30 с.
Двухканальные приемники работают по следующему принципу. Когда один канал приемника производит обработку результатов временных измерений до одного спутника, другой канал устанавливает радиоконтакт с очередным спутником для проведения измерений. Закончив цикл частичной обработки данных, первый канал мгновенно переключается на измерения до очередного спутника без потери времени на его «захват» и «прослушивание». Тем временем второй канал, называемый административным, обращается к следующему спутнику и т. д. Административный канал используется для приема информационных сообщений спутников без прерывания процесса определения координат местоположения, и может быть использован для обработки временных измерений. Кроме того, современные двухканальные приемники программируются для слежения за более чем четырьмя спутниками и в тех случаях, когда за одним из рабочих спутников оказывается потерян контроль, мгновенно используется другой, без перерыва процесса определения координат. Все это существенно ускоряет работу приемников.
Многоканальные приемники (непрерывного слежения). Такие приемники одновременно отслеживают 4 и более спутников. Многоканальные приемники, используемые при производстве инженерно-геодезических работ, могут иметь 4, 6, 8, 10, 12 и даже 24 канала слежения. Кроме очевидного преимущества — непрерывного определения координат в режиме реального времени, скорости и траектории движения, многоканальные приемники могут обрабатывать сигналы всех спутников рабочего созвездия, видимых в настоящий момент на небосклоне, а некоторые приемники одновременно и спутников разных орбитальных систем: NAVSTAR (США) и ГЛОНАСС (Россия).
Одночастотные и двухчастотные приемники. Кроме приемников (одно/двухканальных и многоканальных), работающих на одной частоте радиоволн в практике инженерно-геодезических работ используют и многоканальные двухчастотные приемники, работающие с использованием кодов на двух частотах: 1575,72 MHz и 1227,6 MHz. Приемники такого уровня обеспечивают более точное определение координат точек местности, в связи с возможностью дифференцированного учета для каждого рабочего спутника ионосферных и тропосферных задержек, а также обеспечивают быструю инициализацию (присваивание начальных значений) приемника, что особенно актуально в местах, где могут часто блокироваться сигналы спутников.
По точности определения координат и назначению различают приемники следующих классов:
- навигационного класса с точностью определения координат 150—200 м;
класса картографии и ГИС с точностью определения координат 1—5 м;
геодезического класса с точностью определения координат до 1 см.
Приемники навигационного класса точности призваны решать главным образом навигационные задачи на транспорте, в народном хозяйстве (например, при поиске полезных ископаемых и т. д.) и отдыхе.
Приемники навигационного класса дешевы и компактны (рис. 8.11).
Приемники класса точности картографии и ГИС также относительно дешевы и доступны проектно-изыскательским и строительным организациям (рис. 8.12).
Рис. 8.11. Одночастотный Рис. 8.12.
12-канальный Одночастотный
GPS-приемник навигационного 12-канальный GPS-
класса точности «Eagle Explorer». приемник класса
точности картографии
и ГИС.
Точность приемников класса картографии и ГИС может быть существенно повышена при базовом варианте их использования в случае применения базовых станций (см. ниже п. 8.5) и они могут быть использованы при решении большинства инженерно-геодезических задач, включая задачи, решаемые в режиме реального времени (например, съемка плана и продольного профиля существующей автомобильной дороги с движущегося автомобиля).
Приемники геодезического класса точности весьма недешевы, однако даже в автономном режиме работы обеспечивают определение координат точек местности с точностью до 1—3 см в кинематическом режиме и до 1 см при статических измерениях, и поэтому применимы для решения практически любых инженерно-геодезических задач.
При огромном многообразии приемников «GPS», обеспечивающих выполнение инженерно-геодезических задач на изысканиях и в строительстве, нужно стремиться приобретать приемники и геодезические системы, работающие не только с орбитальным комплексом США «NAVSTAR», но, прежде всего, работающие с отечественной навигационной системой «ГЛОНАСС».