- •Н.Н.Богдашев физическая и коллоидная химия курс лекций
- •Часть I. Физическая химия
- •Оглавление
- •Предисловие
- •Введение
- •1. Предмет физической химии, её место среди естественнонаучных
- •2. Краткий исторический очерк развития физической химии
- •3. Методы физической химии
- •Глава 1
- •И первое начала термодинамики
- •1.1. Краткий исторический очерк
- •1.2. Основные понятия и величины
- •1.3. Нулевое начало термодинамики
- •1.4. Первое начало термодинамики
- •1.5. Энтальпия
- •Глава 2 термохимия
- •2.1. Термохимия, её задачи и значение
- •2.2. Краткий исторический очерк
- •2.3. Калориметрические измерения
- •2.4. Тепловой эффект химической реакции
- •Соотношение между тепловыми эффектами реакций
- •2.4.2. Тепловые эффекты, используемые при термохимических
- •2.5. Стандартные состояния. Стандартные условия
- •2.6. Термохимические уравнения
- •2.7. Закон Гесса
- •2.8. Зависимость теплового эффекта реакции от температуры.
- •2.9. Теплота растворения
- •2.10. Теплота нейтрализации
- •Глава 3 второе и третье начала термодинамики
- •3.1. Второе начало термодинамики
- •3.1.1. Статистический характер второго начала термодинамики
- •3.2. Обратимые и необратимые процессы. Самопроизвольные
- •3.3. Факторы интенсивности и экстенсивности
- •3.4. Термодинамическая вероятность системы
- •3.5. Энтропия
- •3.5.1. Энтропия со статистической точки зрения
- •3.5.2. Энтропия с термодинамической точки зрения
- •3.6. Расчёт изменения энтропии для различных процессов
- •3.6.1. Изотермическое расширение идеального газа
- •3.6.2. Изотермические фазовые переходы (плавление, кипение, сублимация)
- •3.6.3. Неизотермический физический процесс (нагревание или охлаждение
- •3.6.4. Химические реакции
- •3.7. Третье начало термодинамики. Постулат Планка.
- •3.8. Энергия Гельмгольца. Энергия Гиббса. Критерий достижения
- •3.9. Свободная и связанная энергия
- •3.10. Максимальная работа процесса и химическое сродство
- •3.11. Уравнение максимальной работы (уравнение Гиббса
- •Глава 4 термодинамика химического равновесия
- •4.1. Химическое равновесие
- •4.2. Краткий исторический очерк
- •4.3. Константа равновесия
- •4.4. Расчёты с применением констант равновесия
- •4.4.1. Определение направления протекания обратимых реакций
- •4.4.2. Расчёт равновесного выхода продуктов реакции
- •4.5. Факторы, влияющие на равновесие. Принцип Ле-Шателье
- •4.5.1. Влияние на равновесие начального состава реакционной
- •4.5.2. Влияние температуры на равновесие. Уравнения изобары
- •4.5.3. Влияние на равновесный выход изменения объёма
- •4.6. Способы вычисления констант равновесия
- •4.7. Химическое равновесие в гетерогенных системах
- •Глава 5 термодинамика фазового равновесия
- •5.1. Краткий исторический очерк
- •5.2. Фазовые переходы
- •5.3. Основные понятия
- •5.4. Правило фаз
- •5.5. Общее условие фазового равновесия. Химический потенциал
- •Глава 6 фазовые равновесия в однокомпонентных системах
- •6.1. Связь между давлением и температурой фазовых переходов.
- •6.1.1. Процесс кипения. Уравнение Клаузиуса - Клапейрона
- •6.2. Физико-химический анализ. Фазовые диаграммы
- •6.3. Диаграмма состояния воды
- •Глава 7 фазовые равновесия в двухкомпонентных системах. Растворы неэлектролитов
- •7.1. Растворы. Основные понятия
- •7.2. Значение растворов для фармации
- •7.3. Концентрация. Способы выражения концентрации
- •7.4. Двухкомпонентные растворы летучих жидкостей. Закон Рауля
- •7.5. Отклонения от закона Рауля
- •7.6. Первый закон Коновалова
- •7.7. Диаграммы кипения
- •7.8. Второй закон Коновалова
- •7.9. Правило рычага
- •7.10. Перегонка бинарных жидкостных смесей
- •7.11. Разделение азеотропных смесей
- •7.12. Ограниченно растворимые жидкости
- •7.13. Диаграммы растворения. Правило Алексеева
- •7.13.1. Системы с верхней критической температурой растворения
- •7.13.2. Системы с нижней критической температурой растворения
- •7.13.3. Системы с верхней и нижней критическими температурами
- •7.14. Растворы нелетучих веществ. Коллигативные свойства
- •7.15. Понижение температуры замерзания растворов. Криометрия
- •7.16. Повышение температуры кипения растворов. Эбулиометрия
- •7.17. Осмос
- •7.17.1. Осмотическое давление
- •7.17.2. Осмометрия
- •7.17.3. Значение осмотических явлений
- •7.18. Несмешивающиеся жидкости
- •7.19. Перегонка с водяным паром
- •7.20. Диаграммы плавления. Термический анализ
- •7.20.1. Системы, состоящие из неизоморфных веществ
- •7.20.2. Системы, состоящие из веществ, образующих химические
- •7.20.3. Системы, состоящие из веществ, образующих твёрдые
- •7.21. Правило рычага для конденсированных систем
- •Глава 8 фазовые равновесия в трёхкомпонентных системах. Экстракция
- •8.1. Третий компонент в двухслойной жидкой системе. Закон
- •8.2. Жидкостная экстракция
- •Глава 9 электрохимия. Растворы электролитов. Кондуктометрия
- •9.1. Предмет электрохимии и её значение для фармации, медицины
- •9.2. Краткий исторический очерк
- •9.3. Коллигативные свойства растворов электролитов
- •9.4. Буферные растворы. Буферная ёмкость
- •9.5. Электрическая проводимость растворов. Закон Кольрауша
- •9.6. Кондуктометрические измерения
- •9.6.1. Прямая кондуктометрия
- •9.6.2. Кондуктометрическое титрование
- •Глава 10 электродные процессы и электродвижущие силы
- •10.1. Основные понятия и величины
- •10.2. Электроды первого и второго рода. Газовые электроды
- •10.3. Термодинамика гальванического элемента
- •10.4. Формула записи гальванического элемента
- •10.5. Уравнение Нернста
- •10.6. Контактный и диффузионный потенциалы
- •Глава 11 потенциометрические измерения
- •11.1. Потенциометрия
- •11.2. Потенциометрическое определение рН растворов.
- •11.3. Потенциометрическое определение концентрации
- •11.4. Определение констант равновесия электрохимических
- •Глава 12 формальная и молекулярная кинетика
- •12.1. Предмет химической кинетики и её значение для фармации,
- •12.2. Краткий исторический очерк
- •12.3. Кинетическая классификация химических реакций. Порядок
- •12.4. Скорость химической реакции. Время полупревращения
- •12.5. Закон действующих масс. Константа скорости
- •12.6. Расчёт констант скорости для реакций различных порядков
- •12.6.1. Реакции первого порядка
- •12.6.2. Реакции второго порядка
- •12.7. Определение порядка реакции
- •12.8. Механизмы химических реакций
- •12.9. Влияние температуры на скорость реакции
- •12.9.1. Правило Вант-Гоффа
- •12.9.2. Теория активных столкновений. Уравнение Аррениуса
- •12.10. Теория переходного состояния. Активированный комплекс
- •12.11. Гетерогенные реакции
- •Глава 13 катализ
- •13.1. Основные понятия. Значение катализа для медицины,
- •13.2. Краткий исторический очерк
- •13.3. Виды катализа
- •13.4. Механизм действия катализаторов
- •13.5. Гомогенный катализ
- •13.6. Гетерогенный катализ
- •13.7. Теории гетерогенного катализа
- •13.7.1. Мультиплетная теория
- •13.7.2. Теория активных ансамблей
- •13.7.3. Электронная теория
- •13.8. Ингибиторы
- •Глава 14 фотохимические реакции
- •14.1. Значение фотохимических реакций
- •14.2. Первичные и вторичные фотохимические процессы
- •14.3. Законы фотохимии
- •14.4. Фотохимическая эффективность
- •14.5. Фотосенсибилизация
- •Использованная литература
- •Предметный указатель
- •Часть I - физическая химия.
- •357532 Г. Пятигорск, пр. Калинина, 11
1.3. Нулевое начало термодинамики
Состояние термодинамического равновесия - состояние системы, не изменяющееся во времени и не сопровождающееся переносом через систему вещества или энергии. Такое состояние характеризуется, прежде всего, равенством температуры всех частей системы. Существование одинаковой температуры для всех частей системы, находящейся в равновесии, иногда называют нулевым началом термодинамики. Оно может быть сформулировано и так:
Все части системы, находящейся в термодинамическом равновесии, имеют одну и ту же температуру.
В соответствии с этим законом для характеристики состояния равновесия нескольких систем можно дать следующий постулат: если система А находится в термодинамическом равновесии с системой В и с системой С, то системы В и С тоже находятся в равновесии друг с другом.
1.4. Первое начало термодинамики
Впервые данный принцип был сформулирован Ю.Р.Майером в 1842 г., а в 1845 г. он был экспериментально проверен Дж.П.Джоулем путём установления эквивалентности теплоты и работы.
Первое начало (как и другие законы термодинамики) является постулатом. Его справедливость доказывается тем, что ни одно из следствий, к которым оно приводит, не находится в противоречии с опытом. Этот принцип является универсальным законом, и ряд его следствий имеет большое значение для физической химии и для решения различных производственных задач.
В химии первое начало термодинамики рассматривается как закон сохранения энергии для химических процессов, сопровождающихся тепловыми явлениями. Оно лежит в основе большинства уравнений химической термодинамики. Этому закону соответствует математическое выражение
U = Q w,
которое может быть передано такой формулировкой:
В любом процессе изменение внутренней энергии U = U2 U1 какой-либо системы равно количеству сообщённой системе теплоты Q минус количество работы w, совершённой системой.
(Символ означает разность между конечным и исходным значениями функций состояния, изменение которых не зависит от пути процесса, и, следовательно, он неприменим к теплоте и работе). Для бесконечно малых изменений математическое выражение первого начала следует записать так:
dU = Q w
(где d - знак дифференциала, - знак бесконечно малого изменения величины).
Существуют и другие формулировки 1-го начала термодинамики, которым соответствуют свои способы записи математического выражения. Для химии из них наиболее важны следующие:
В любой изолированной системе общий запас энергии сохраняется постоянным.
Т.е. при Q = 0 и w = 0
U = const и U = 0
Если система не совершает работы, то любое изменение внутренней энергии осуществляется только за счёт поглощения или выделения теплоты.
Т.е. при w = 0
U = Q
Отсюда следует, что тепловой эффект процесса QV, измеренный при постоянном объёме (например, в герметично закрытом калориметрическом сосуде, не поддающемся расширению), численно равен изменению внутренней энергии:
QV = U.
Если система не получает и не отдаёт теплоты, то совершаемая ею работа производится только за счёт убыли внутренней энергии.
Т.е. при Q = 0
U = - w или w = U
Отсюда следует, что невозможно создать вечный двигатель 1-го рода, то есть механизм, бесконечно долго производящий работу без притока энергии извне.
