- •Н.Н.Богдашев физическая и коллоидная химия курс лекций
- •Часть I. Физическая химия
- •Оглавление
- •Предисловие
- •Введение
- •1. Предмет физической химии, её место среди естественнонаучных
- •2. Краткий исторический очерк развития физической химии
- •3. Методы физической химии
- •Глава 1
- •И первое начала термодинамики
- •1.1. Краткий исторический очерк
- •1.2. Основные понятия и величины
- •1.3. Нулевое начало термодинамики
- •1.4. Первое начало термодинамики
- •1.5. Энтальпия
- •Глава 2 термохимия
- •2.1. Термохимия, её задачи и значение
- •2.2. Краткий исторический очерк
- •2.3. Калориметрические измерения
- •2.4. Тепловой эффект химической реакции
- •Соотношение между тепловыми эффектами реакций
- •2.4.2. Тепловые эффекты, используемые при термохимических
- •2.5. Стандартные состояния. Стандартные условия
- •2.6. Термохимические уравнения
- •2.7. Закон Гесса
- •2.8. Зависимость теплового эффекта реакции от температуры.
- •2.9. Теплота растворения
- •2.10. Теплота нейтрализации
- •Глава 3 второе и третье начала термодинамики
- •3.1. Второе начало термодинамики
- •3.1.1. Статистический характер второго начала термодинамики
- •3.2. Обратимые и необратимые процессы. Самопроизвольные
- •3.3. Факторы интенсивности и экстенсивности
- •3.4. Термодинамическая вероятность системы
- •3.5. Энтропия
- •3.5.1. Энтропия со статистической точки зрения
- •3.5.2. Энтропия с термодинамической точки зрения
- •3.6. Расчёт изменения энтропии для различных процессов
- •3.6.1. Изотермическое расширение идеального газа
- •3.6.2. Изотермические фазовые переходы (плавление, кипение, сублимация)
- •3.6.3. Неизотермический физический процесс (нагревание или охлаждение
- •3.6.4. Химические реакции
- •3.7. Третье начало термодинамики. Постулат Планка.
- •3.8. Энергия Гельмгольца. Энергия Гиббса. Критерий достижения
- •3.9. Свободная и связанная энергия
- •3.10. Максимальная работа процесса и химическое сродство
- •3.11. Уравнение максимальной работы (уравнение Гиббса
- •Глава 4 термодинамика химического равновесия
- •4.1. Химическое равновесие
- •4.2. Краткий исторический очерк
- •4.3. Константа равновесия
- •4.4. Расчёты с применением констант равновесия
- •4.4.1. Определение направления протекания обратимых реакций
- •4.4.2. Расчёт равновесного выхода продуктов реакции
- •4.5. Факторы, влияющие на равновесие. Принцип Ле-Шателье
- •4.5.1. Влияние на равновесие начального состава реакционной
- •4.5.2. Влияние температуры на равновесие. Уравнения изобары
- •4.5.3. Влияние на равновесный выход изменения объёма
- •4.6. Способы вычисления констант равновесия
- •4.7. Химическое равновесие в гетерогенных системах
- •Глава 5 термодинамика фазового равновесия
- •5.1. Краткий исторический очерк
- •5.2. Фазовые переходы
- •5.3. Основные понятия
- •5.4. Правило фаз
- •5.5. Общее условие фазового равновесия. Химический потенциал
- •Глава 6 фазовые равновесия в однокомпонентных системах
- •6.1. Связь между давлением и температурой фазовых переходов.
- •6.1.1. Процесс кипения. Уравнение Клаузиуса - Клапейрона
- •6.2. Физико-химический анализ. Фазовые диаграммы
- •6.3. Диаграмма состояния воды
- •Глава 7 фазовые равновесия в двухкомпонентных системах. Растворы неэлектролитов
- •7.1. Растворы. Основные понятия
- •7.2. Значение растворов для фармации
- •7.3. Концентрация. Способы выражения концентрации
- •7.4. Двухкомпонентные растворы летучих жидкостей. Закон Рауля
- •7.5. Отклонения от закона Рауля
- •7.6. Первый закон Коновалова
- •7.7. Диаграммы кипения
- •7.8. Второй закон Коновалова
- •7.9. Правило рычага
- •7.10. Перегонка бинарных жидкостных смесей
- •7.11. Разделение азеотропных смесей
- •7.12. Ограниченно растворимые жидкости
- •7.13. Диаграммы растворения. Правило Алексеева
- •7.13.1. Системы с верхней критической температурой растворения
- •7.13.2. Системы с нижней критической температурой растворения
- •7.13.3. Системы с верхней и нижней критическими температурами
- •7.14. Растворы нелетучих веществ. Коллигативные свойства
- •7.15. Понижение температуры замерзания растворов. Криометрия
- •7.16. Повышение температуры кипения растворов. Эбулиометрия
- •7.17. Осмос
- •7.17.1. Осмотическое давление
- •7.17.2. Осмометрия
- •7.17.3. Значение осмотических явлений
- •7.18. Несмешивающиеся жидкости
- •7.19. Перегонка с водяным паром
- •7.20. Диаграммы плавления. Термический анализ
- •7.20.1. Системы, состоящие из неизоморфных веществ
- •7.20.2. Системы, состоящие из веществ, образующих химические
- •7.20.3. Системы, состоящие из веществ, образующих твёрдые
- •7.21. Правило рычага для конденсированных систем
- •Глава 8 фазовые равновесия в трёхкомпонентных системах. Экстракция
- •8.1. Третий компонент в двухслойной жидкой системе. Закон
- •8.2. Жидкостная экстракция
- •Глава 9 электрохимия. Растворы электролитов. Кондуктометрия
- •9.1. Предмет электрохимии и её значение для фармации, медицины
- •9.2. Краткий исторический очерк
- •9.3. Коллигативные свойства растворов электролитов
- •9.4. Буферные растворы. Буферная ёмкость
- •9.5. Электрическая проводимость растворов. Закон Кольрауша
- •9.6. Кондуктометрические измерения
- •9.6.1. Прямая кондуктометрия
- •9.6.2. Кондуктометрическое титрование
- •Глава 10 электродные процессы и электродвижущие силы
- •10.1. Основные понятия и величины
- •10.2. Электроды первого и второго рода. Газовые электроды
- •10.3. Термодинамика гальванического элемента
- •10.4. Формула записи гальванического элемента
- •10.5. Уравнение Нернста
- •10.6. Контактный и диффузионный потенциалы
- •Глава 11 потенциометрические измерения
- •11.1. Потенциометрия
- •11.2. Потенциометрическое определение рН растворов.
- •11.3. Потенциометрическое определение концентрации
- •11.4. Определение констант равновесия электрохимических
- •Глава 12 формальная и молекулярная кинетика
- •12.1. Предмет химической кинетики и её значение для фармации,
- •12.2. Краткий исторический очерк
- •12.3. Кинетическая классификация химических реакций. Порядок
- •12.4. Скорость химической реакции. Время полупревращения
- •12.5. Закон действующих масс. Константа скорости
- •12.6. Расчёт констант скорости для реакций различных порядков
- •12.6.1. Реакции первого порядка
- •12.6.2. Реакции второго порядка
- •12.7. Определение порядка реакции
- •12.8. Механизмы химических реакций
- •12.9. Влияние температуры на скорость реакции
- •12.9.1. Правило Вант-Гоффа
- •12.9.2. Теория активных столкновений. Уравнение Аррениуса
- •12.10. Теория переходного состояния. Активированный комплекс
- •12.11. Гетерогенные реакции
- •Глава 13 катализ
- •13.1. Основные понятия. Значение катализа для медицины,
- •13.2. Краткий исторический очерк
- •13.3. Виды катализа
- •13.4. Механизм действия катализаторов
- •13.5. Гомогенный катализ
- •13.6. Гетерогенный катализ
- •13.7. Теории гетерогенного катализа
- •13.7.1. Мультиплетная теория
- •13.7.2. Теория активных ансамблей
- •13.7.3. Электронная теория
- •13.8. Ингибиторы
- •Глава 14 фотохимические реакции
- •14.1. Значение фотохимических реакций
- •14.2. Первичные и вторичные фотохимические процессы
- •14.3. Законы фотохимии
- •14.4. Фотохимическая эффективность
- •14.5. Фотосенсибилизация
- •Использованная литература
- •Предметный указатель
- •Часть I - физическая химия.
- •357532 Г. Пятигорск, пр. Калинина, 11
2.9. Теплота растворения
Калориметрическими методами экспериментально определяется и такая важная величина, как теплота растворения. Она имеет особое значение для фармации, так как приготовление жидких лекарственных форм связано с растворением, главным образом, твёрдых (порошкообразных) лекарственных веществ, а, следовательно, и с тепловым эффектом, возникающим при этом и достигающим иногда значительных величин.
Теплота растворения Нрр или Нs.(от solution - раствор) - тепловой эффект растворения вещества при постоянном давлении.
Различают интегральную и дифференциальную теплоту растворения. Теплота растворения 1 моля вещества с образованием т. н. бесконечно разбавленного раствора называется интегральной теплотой растворения. Интегральная теплота растворения зависит от соотношения количеств растворяемого вещества и растворителя и, следовательно, от концентрации образующегося раствора. Тепловой эффект при растворении 1 моля вещества в очень большом количестве уже имеющегося раствора этого же вещества некоторой концентрации (приводящем к бесконечно малому увеличению концентрации) называется дифференциальной теплотой растворения:
d(Нрр)
Нрр
дифф
=
.
dT
Интегральная теплота растворения кристаллических веществ (например, неорганических солей, оснований и т. п.) складывается из двух величин - энтальпии превращения кристаллической решётки вещества в ионный газ (разрушения кристаллической решетки) Нреш и энтальпии сольватации (в случае водных растворов - гидратации) молекул и образующихся из них при диссоциации ионов Нсольв (Нгидр):
Нрр = Нреш + Нсольв; Нрр = Нреш + Нгидр
Величины Нреш и Нсольв противоположны по знаку (сольватация и гидратация всегда сопровождаются выделением теплоты, тогда как разрушение кристаллической решётки - её поглощением). Так, растворение веществ, обладающих не очень прочной кристаллической решёткой (например, гидроксидов щелочных металлов – NaOH, КОН и т. п.), сопровождается сильным разогреванием образующегося раствора, а хорошо гидратирующихся жидких веществ, не имеющих кристаллической решётки (например, серной кислоты) - ещё бóльшим разогреванием вплоть до вскипания. Напротив, растворение веществ с прочной кристаллической решёткой, таких, как, например, галогениды щелочных и щёлочноземельных металлов KCl, NaCl, CaCl2, идёт с поглощением теплоты и приводит к охлаждению. (Этот эффект используется в лабораторной практике для приготовления охлаждающих смесей).
Поэтому знак суммарного теплового эффекта при растворении зависит от того, какое из его слагаемых больше по абсолютной величине.
Если известна энтальпия разрушения кристаллической решетки соли, то, измеряя теплоту растворения, можно вычислять энтальпию её сольватации. С другой стороны, измеряя теплоту растворения кристаллогидрата (т. е. гидратированной соли), можно с достаточной точностью вычислить энтальпию разрушения (прочность) кристаллической решётки.
Теплота растворения хлорида калия, равная +17,577 кДж/моль при концентрации 0,278 моль/л и 25оС, предложена в качестве термохимического стандарта для проверки работы калориметров.
Температурная зависимость теплот растворения, как и тепловых эффектов химических реакций, подчиняется уравнению Кирхгоффа.
Когда растворяемое вещество и растворитель химически подобны и при растворении не возникает осложнений, связанных с ионизацией или сольватацией, теплоту растворения можно считать приблизительно равной теплоте плавления растворяемого вещества. В основном это относится к растворению органических веществ в неполярных растворителях.
