
- •Acknowledgments
- •Introduction
- •Assessment Test
- •Answers to Assessment Test
- •Service Provider Networks
- •Scalability
- •Traffic Engineering
- •Quality of Service
- •MPLS Label Stack
- •Shim Header
- •MPLS Architecture
- •Control
- •Forwarding
- •MPLS Label Switching
- •MPLS Network Components
- •Device Output
- •Label-Switched Paths
- •MPLS Applications
- •MPLS and ATM
- •Overlay
- •Quality of Service
- •Traffic Engineering
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Routing Review
- •Frame-Mode MPLS Working Example
- •Network Routing Protocol Examples
- •MPLS Step by Step
- •Label Distribution
- •Assigning Labels
- •Troubleshooting and Verification
- •Device Configuration
- •IGP Verification
- •CEF Verification
- •MPLS Verification
- •Label Distribution and Bindings
- •Binding Verification
- •Troubleshooting the Network
- •Hiding Service Provider Devices
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Frame-Mode MPLS and ATM
- •Frame-Mode MPLS and ATM Configuration
- •Cell-Mode MPLS
- •Label Binding with ATM
- •Cell-Mode Label Switching
- •VC Merge
- •Loop Prevention
- •Cell-Mode MPLS Configuration
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •VPNs 101
- •Point-to-Point Connections
- •Virtual Private Networks
- •Categories of VPNs
- •VPN Routing
- •Peer-to-Peer VPNs
- •Optimal Routing
- •Peer-to-Peer Security
- •Peer-to-Peer VPN Routing
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Service Provider Configuration
- •MPLS VPNs
- •Virtual Router
- •Virtual Routing and Forwarding Tables
- •MPLS Operational Overview
- •MP-BGP Configuration
- •An MPLS VPN Example
- •Route Distinguisher
- •MP-IBGP Configuration Example
- •Initial Network Configuration
- •MP-IBGP Configuration
- •Verification
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •A Review of VPNs
- •Configuring a Simple MPLS VPN
- •Configuring VRF Interfaces
- •Running RIP in an MPLS VPN
- •Configuring RIPv2 with Address-Family ipv4
- •Configuring Redistribution
- •Route Targets
- •Configuring Route Targets
- •A Review of Simple VPN Configuration
- •Configuring MPLS in the Service Provider Network
- •Simple VPN Configuration
- •Configuring the PE-CE Routing Protocol
- •Lab: Configuring an MPLS VPN
- •Configuring POP Routers
- •VPN Configuration
- •Raleigh Running-Config
- •Atlanta Running-Config
- •Peer 1 Running-Config
- •Peer 2 Running-Config
- •Verification with Ping
- •Routing Table Isolation
- •Verifying VRF Routes
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •MP-BGP and OSPF
- •A Review of OSPF
- •OSPF Router Types
- •Link State Advertisements
- •OSPF for MPLS VPNs
- •OSPF Super-Backbone
- •Preventing Routing Loops
- •Path Selection
- •MPLS VPN OSPF Lab
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Static Routing
- •Device Configuration
- •VPN Configuration
- •Raleigh Running-Config
- •Atlanta Running-Config
- •Peer Router Configuration
- •Verification with Ping
- •Verifying Static VRF Routes
- •E-BGP and MPLS VPNs
- •Device Configuration
- •E-BGP Operation
- •AS-Override
- •VPN Configuration
- •Raleigh Running-Config
- •Atlanta Running-Config
- •Peer Router Configuration
- •Peer 1 Running-Config
- •Peer 2 Running-Config
- •Verification with Ping
- •Advanced MPLS VPN Topologies
- •Simple VPNs
- •Central Services MPLS VPN Topology
- •Overlay MPLS VPN Topology
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Challenge Lab 1
- •MPLS
- •MP-IBGP
- •Answer to Lab 1.1
- •Answer to Lab 1.2
- •Answer to Lab 1.3
- •Challenge Lab 2
- •Tag Switching
- •MP-IBGP
- •Answer to Lab 2.1
- •Answer to Lab 2.2
- •Answer to Lab 2.3
- •Challenge Lab 3
- •VRF Configuration
- •RIPv2
- •Redistribution
- •Answer to Lab 3.1
- •Answer to Lab 3.2
- •Answer to Lab 3.3
- •Challenge Lab 4
- •VRF Configuration
- •OSPF
- •Redistribution
- •Answer to Lab 4.1
- •Answer to Lab 4.2
- •Answer to Lab 4.3
- •Challenge Lab 5
- •VRF Configuration
- •Static Routes and Redistribution
- •Answer to Lab 5.1
- •Answer to Lab 5.2
- •Challenge Lab 6
- •VRF Configuration
- •E-BGP Configuration
- •Answer to Lab 6.1
- •Answer to Lab 6.2
- •Service Provider Network Configuration with OSPF
- •Router Configuration
- •Routing Tables
- •Tags
- •Service Provider Network Configuration with IS-IS
- •Router Configuration
- •Routing Tables
- •Tag Switching Forwarding Tables
- •Glossary

104 Chapter 3 MPLS and ATM
T A B L E 3 . 1 Cell-Mode Service Provider Network Device Roles
Device |
Function |
|
|
Site 1 |
Non-MPLS router |
Site 2 |
Non-MPLS router |
Melbourne POP |
Router functioning as an ATM edge-LSR |
Ft. Lauderdale POP |
Router functioning as an ATM edge-LSR |
Orlando_ATM |
ATM switch functioning as an ATM-LSR |
Miami_ATM |
ATM switch functioning as an ATM-LSR |
|
|
The easiest way to discuss label switching in cell-mode MPLS is to first relate it to frame-mode MPLS. If the network in Figure 3.7 is enabled for frame-mode MPLS, what happens? An unlabeled IP packet enters the network, and the ingress edge-LSR applies a label that is used to label-switch the packet through the service provider network, ultimately delivering it to the egress edge-LSR.
How are things different in cell-mode MPLS? An unlabeled packet enters the network, and the ingress ATM edge-LSR uses the VPI/VCI mappings as the label. Each ATM-LSR in the LSP through the service provider network switches the packet based solely on the VPI/VCI values. That’s it! Just remember: in cell-mode MPLS, labels equal VPI/VCI values.
VC Merge
Cisco ATM-LSRs make use of a function called virtual circuit merge (VC merge) to solve the cell-interleaving problem and reduce the number of labels used in the ATM-LSR network, or ATM-LSR domain.
An ATM-LSR domain is a series of ATM-LSRs connected together with
LC-ATM interfaces.
Let’s start with the problem called cell interleaving.
Copyright ©2002 SYBEX, Inc., Alameda, CA |
www.sybex.com |

Cell-Mode MPLS 105
In Figure 3.8, an IP packet enters the network at the POP 1 router. The POP 1 router performs a lookup, and the mapping of label to the VPI/VCI value is identified. The IP packet is broken up, or segmented, into ATM cells, and the VPI/VCI value is applied to each cell as it is sent to ATM 1. For simplicity’s sake, the cells from POP 1 are illustrated in Figure 3.8 with a label; in reality, it’s a VPI/VCI value.
F I G U R E 3 . 8 Cell interleaving
IP
POP 1
IP
POP 2
9
15
ATM |
|
|
|
|
|
|
|
|
|
|
? |
|
|
|
42 |
|
42 |
|
42 |
|
|
42 |
|
ATM 1 |
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
||
Traffic flow |
|
|
|
|
|
|
|
|
Also in Figure 3.8, an IP packet enters the network at the POP 2 router. The POP 2 router performs a lookup, and the mapping of a label to the VPI/ VCI value is identified. The IP packet is broken up, or segmented, into ATM cells, and the VPI/VCI value is applied to each cell as it is sent to ATM 1.
Again, for simplicity’s sake, the cells from POP 2 are illustrated with a label; in reality, it’s a VPI/VCI value.
To view the number of tags used, execute the show tag-switching atmtdp summary command. The local value in the field tells you how many tags have been assigned by the TSR on the interface. The corresponding MPLS command can be found at www.cisco.com.
R1#show tag-switching atm-tdp summary
Total number of destinations: 691
TC-ATM bindings summary |
|
|
|
|
||
interface |
total |
active |
bindwait |
local |
remote |
other |
ATM0/0/0 |
490 |
488 |
1 |
300 |
302 |
1 |
If the ATM switch (in Figure 3.8, it’s called ATM 1) uses the same label for cells traveling to a common destination, the receiving device does not know how to reassemble the cells into packets. How can this problem be fixed? By using multiple labels for each flow. Look at Figure 3.9. On ATM 1,
Copyright ©2002 SYBEX, Inc., Alameda, CA |
www.sybex.com |

106 Chapter 3 MPLS and ATM
the flow of cells from POP 1 uses label 49, and the flow of cells from POP 2 uses label 61. When these cells are received by an end device that needs to reassemble the cells back into packets, it’s easy to tell the cells apart by their labels.
F I G U R E 3 . 9 Cells with multiple labels
IP |
|
POP 1 |
9 |
|
15 |
IP |
|
POP 2 |
|
ATM
49
61
49
61
ATM 1
Traffic flow
There is one drawback to this solution. ATM 1 uses many labels. For each flow, ATM 1 sends a downstream-on-demand–style request to its downstream ATM-LSR, requesting labels for each flow.
VC merge fixes cell interleaving and reduces the number of labels required by buffering cell flows and forwarding them in a serialized fashion. Consider the example illustrated in Figure 3.10. The cell flow from POP 2 is buffered, while the flow of cells from POP 1 is sent out the outbound interface. When the cell flow from POP 1 is complete, the cell flow from POP 2 is sent out the outbound interface. A downstream device needing to reassemble the cells receives each flow in order.
F I G U R E 3 . 1 0 An ATM network with VC merge
IP
POP 1
IP
POP 2
9
15
ATM
42
42
42
42
ATM 1
Through VC merge, an ATM-LSR can reuse the same label for multiple cell flows. VC merge solves the cell-interleaving problem and allows the ATM-LSR to preserve label space. VC merge is enabled on ATM-LSRs by
Copyright ©2002 SYBEX, Inc., Alameda, CA |
www.sybex.com |