
- •Acknowledgments
- •Introduction
- •Assessment Test
- •Answers to Assessment Test
- •Service Provider Networks
- •Scalability
- •Traffic Engineering
- •Quality of Service
- •MPLS Label Stack
- •Shim Header
- •MPLS Architecture
- •Control
- •Forwarding
- •MPLS Label Switching
- •MPLS Network Components
- •Device Output
- •Label-Switched Paths
- •MPLS Applications
- •MPLS and ATM
- •Overlay
- •Quality of Service
- •Traffic Engineering
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Routing Review
- •Frame-Mode MPLS Working Example
- •Network Routing Protocol Examples
- •MPLS Step by Step
- •Label Distribution
- •Assigning Labels
- •Troubleshooting and Verification
- •Device Configuration
- •IGP Verification
- •CEF Verification
- •MPLS Verification
- •Label Distribution and Bindings
- •Binding Verification
- •Troubleshooting the Network
- •Hiding Service Provider Devices
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Frame-Mode MPLS and ATM
- •Frame-Mode MPLS and ATM Configuration
- •Cell-Mode MPLS
- •Label Binding with ATM
- •Cell-Mode Label Switching
- •VC Merge
- •Loop Prevention
- •Cell-Mode MPLS Configuration
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •VPNs 101
- •Point-to-Point Connections
- •Virtual Private Networks
- •Categories of VPNs
- •VPN Routing
- •Peer-to-Peer VPNs
- •Optimal Routing
- •Peer-to-Peer Security
- •Peer-to-Peer VPN Routing
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Service Provider Configuration
- •MPLS VPNs
- •Virtual Router
- •Virtual Routing and Forwarding Tables
- •MPLS Operational Overview
- •MP-BGP Configuration
- •An MPLS VPN Example
- •Route Distinguisher
- •MP-IBGP Configuration Example
- •Initial Network Configuration
- •MP-IBGP Configuration
- •Verification
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •A Review of VPNs
- •Configuring a Simple MPLS VPN
- •Configuring VRF Interfaces
- •Running RIP in an MPLS VPN
- •Configuring RIPv2 with Address-Family ipv4
- •Configuring Redistribution
- •Route Targets
- •Configuring Route Targets
- •A Review of Simple VPN Configuration
- •Configuring MPLS in the Service Provider Network
- •Simple VPN Configuration
- •Configuring the PE-CE Routing Protocol
- •Lab: Configuring an MPLS VPN
- •Configuring POP Routers
- •VPN Configuration
- •Raleigh Running-Config
- •Atlanta Running-Config
- •Peer 1 Running-Config
- •Peer 2 Running-Config
- •Verification with Ping
- •Routing Table Isolation
- •Verifying VRF Routes
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •MP-BGP and OSPF
- •A Review of OSPF
- •OSPF Router Types
- •Link State Advertisements
- •OSPF for MPLS VPNs
- •OSPF Super-Backbone
- •Preventing Routing Loops
- •Path Selection
- •MPLS VPN OSPF Lab
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Static Routing
- •Device Configuration
- •VPN Configuration
- •Raleigh Running-Config
- •Atlanta Running-Config
- •Peer Router Configuration
- •Verification with Ping
- •Verifying Static VRF Routes
- •E-BGP and MPLS VPNs
- •Device Configuration
- •E-BGP Operation
- •AS-Override
- •VPN Configuration
- •Raleigh Running-Config
- •Atlanta Running-Config
- •Peer Router Configuration
- •Peer 1 Running-Config
- •Peer 2 Running-Config
- •Verification with Ping
- •Advanced MPLS VPN Topologies
- •Simple VPNs
- •Central Services MPLS VPN Topology
- •Overlay MPLS VPN Topology
- •Summary
- •Exam Essentials
- •Key Terms
- •Review Questions
- •Answers to Review Questions
- •Challenge Lab 1
- •MPLS
- •MP-IBGP
- •Answer to Lab 1.1
- •Answer to Lab 1.2
- •Answer to Lab 1.3
- •Challenge Lab 2
- •Tag Switching
- •MP-IBGP
- •Answer to Lab 2.1
- •Answer to Lab 2.2
- •Answer to Lab 2.3
- •Challenge Lab 3
- •VRF Configuration
- •RIPv2
- •Redistribution
- •Answer to Lab 3.1
- •Answer to Lab 3.2
- •Answer to Lab 3.3
- •Challenge Lab 4
- •VRF Configuration
- •OSPF
- •Redistribution
- •Answer to Lab 4.1
- •Answer to Lab 4.2
- •Answer to Lab 4.3
- •Challenge Lab 5
- •VRF Configuration
- •Static Routes and Redistribution
- •Answer to Lab 5.1
- •Answer to Lab 5.2
- •Challenge Lab 6
- •VRF Configuration
- •E-BGP Configuration
- •Answer to Lab 6.1
- •Answer to Lab 6.2
- •Service Provider Network Configuration with OSPF
- •Router Configuration
- •Routing Tables
- •Tags
- •Service Provider Network Configuration with IS-IS
- •Router Configuration
- •Routing Tables
- •Tag Switching Forwarding Tables
- •Glossary
Frame-Mode MPLS and ATM Configuration 97
an MPLS-capable router in the path from PE1 to PE2, a label would be imposed.
So, what do you need to remember about frame-mode MPLS? Well, part of the MPLS architecture is that control-plane information must be exchanged with plain old IP. ATM does not have interfaces supporting plain old IP. To implement MPLS in conjunction with a non-MPLS ATM core, PVCs must be set up between PE routers.
The problem with this method of MPLS deployment is scalability. To allow for maximum redundancy and optimum routing, a full mesh of VCs must be created between all the ATM edge-LSRs, resulting an full-mesh overlay topology. If you remember back to Chapter 1, “An Introduction to MPLS,” one of the reasons for going to MPLS was to avoid the scalability problems inherent in full-mesh overlay topologies.
However, if you don’t have MPLS-capable switches, this is how it is done. Before moving on to frame-mode MPLS and ATM configuration, let’s
talk about loop detection and prevention. Frame-mode MPLS uses standard IP TTL to detect routing loops. Without MPLS, an IP packet has its TTL decremented by 1 by each router it passes through. For MPLS, the TTL (Time- to-Live) field from the IP TTL is decremented by 1 by the ingress edge-LSR, and then copied into the MPLS label TTL field. Upon exiting the MPLS network, the MPLS label TTL value is copied back into the IP TTL field. If this field is set to 0, the packet is discarded.
To prevent loops, frame-mode MPLS relies on the routing protocol to ensure that the network is loop-free. By relying on the routing protocol
to prevent loops, an LSR uses the same loop-prevention mechanisms as nonMPLS routers.
Frame-Mode MPLS and ATM Configuration
The trick in configuring frame-mode MPLS does not have anything to do with which MPLS or tag switching commands are used. The trick is how the ATM sub-interface on the ATM edge-LSR router is set up.
There are two options available when setting up ATM sub-interfaces: mpls and point-to-point. If a sub-interface is set up as mpls, when MPLS is enabled, it will run in cell mode. When a sub-interface is set up as point- to-point, when MPLS is enabled, it will run in frame mode.
Copyright ©2002 SYBEX, Inc., Alameda, CA |
www.sybex.com |

98 Chapter 3 MPLS and ATM
Let me illustrate. Chapter 2 introduced you to basic MPLS configuration. For example, the IOS commands to configure MPLS on a router are as follows:
PE1#config t
PE1(config)#ip cef
PE1(config)#mpls ip
PE1(config-if)#interface serial 0/0
PE1(config-if)#mpls ip
The IOS commands to configure tag switching on a router are as follows:
PE1#config t
PE1(config)#ip cef
PE1(config)#tag-switching advertise-tags
PE1(config-if)#interface serial 0/0
PE1(config-if)#tag-switching ip
In the preceding configuration commands, frame-mode MPLS is enabled because the interface in question is a serial interface. Frame-mode MPLS means that label distribution will be independent control with unsolicited downstream.
So, what does all this have to do with ATM? Let me show you. Earlier in this section, I said that the trick is in how the ATM sub-interface on the ATM edge-LSR router is set up. When an ATM sub-interface is configured with the point-to-point option, MPLS operates in frame mode. For example, in Figure 3.4, PE1 and PE2 are connected with an ATM PVC. The ATM subinterfaces on the PE routers are configured with the point-to-point command.
F I G U R E 3 . 4 ATM frame-mode interface configuration network
|
ATM 1/0.1 |
PVC |
ATM 1/0.1 |
|
PE1 |
|
PE2 |
||
CE1 |
|
|
CE2 |
When MPLS is set up on a serial interface, it runs in frame mode. When MPLS is set up on a point-to-point ATM sub-interface, it runs in frame mode. The relevant configuration, assuming that the global configuration
Copyright ©2002 SYBEX, Inc., Alameda, CA |
www.sybex.com |
Frame-Mode MPLS and ATM Configuration 99
tasks are complete, for MPLS on a router with an ATM interface is as follows:
interface ATM1/0 no ip address
!
interface ATM1/0.1 point-to-point
ip address 192.168.1.5 255.255.255.0 pvc 0/100
encapsulation aal5snap mpls ip
To verify your configuration, use the show mpls ldp neighbor command:
ATM_P1# show mpls ldp neighbor
Peer LDP Ident: 192.168.1.1:0; Local TDP Ident 192.168.1.2:0 TCP connection: 192.168.1.1:11033 - 192.168.1.2.647
State: Oper; PIEs sent/rcvd: 8/8; ; Downstream Up time: 00:02:15
LDP discovery sources: ATM1/0.1
Addresses bound to peer LDP Ident: 192.168.1.10 192.168.1.1
The configuration to enable tag switching on a router with an ATM interface, assuming that tag switching is globally enabled, is as follows:
interface ATM1/0 no ip address
!
interface ATM1/0.1 point-to-point
ip address 192.168.1.5 255.255.255.0 pvc 0/100
encapsulation aal5snap tag-switching ip
To verify your configuration, use the show tag-switching tdp neighbor command:
ATM_P1# show tag-switching tdp neighbor
Peer TDP Ident: 192.168.1.1:0; Local TDP Ident
Copyright ©2002 SYBEX, Inc., Alameda, CA |
www.sybex.com |