
- •Химия и технология гомогенного катализа Конспект лекций Москва 2012
- •Предисловие
- •Общие проблемы катализа
- •1.1 Краткая история открытия каталитических реакций и теории катализа
- •Краткая история открытия каталитических реакций
- •1.2 Теории катализа
- •1.3 Классификации каталитических процессов и катализаторов
- •1.3.1 Классификация каталитических процессов
- •1.3.2 Классификации катализаторов
- •2. Выбор катализаторов
- •2.1 Современное содержание термина «активация»
- •2.1.1 Классификация комплексов
- •Карбеновые комплексы:
- •Карбиновые комплексы
- •2.2 Активация молекул
- •2.2.1 Молекула водорода
- •2.2.2 Молекула монооксида углерода
- •2.2.3 Активация алкенов и алкинов
- •2.2.3.1 Реакции координированных алкенов
- •2.2.3.2 Реакции координированных алкинов
- •2.2.4 Активация полярных молекул
- •2.3 Проблема выбора катализатора и возможные пути ее решения
- •2.3.1 Эмпирический подход.
- •2.3.2 Полуэмпирический метод.
- •2.3.3 Теоретический подход.
- •2.4 Требования к промышленным катализаторам
- •2.4.1 Активность (производительность)
- •2.4.2 Селективность.
- •2.4.3 Стабильность.
- •2.4.4 Наличие методик регенерации и утилизации
- •2.4.5 Воспроизводимость.
- •2.4.6 Экологичность.
- •2.4.7 Экономичность.
- •Технология гомогенного катализа
- •Методы приготовления и исследования гомогенных катализаторов
- •3.1 Приготовление гомогенных катализаторов
- •3.2 Методы исследования гомогенных катализаторов и процессов с их участием
- •3.2.1 Дифракционные методы
- •3.2.2 Электронографический анализ (эга)
- •3.2.3 Спектроскопические методы.
- •3.2.4 Масс-спектрометрия
- •Технология синтеза и разделения реакционных систем на основе гомогенных катализаторов
- •4.1 Выбор реактора
- •4.2 Методы разделения катализаторов и продуктов, используемые для гомогенно-каталитических реакционных систем
- •4.2.1. Выделение наиболее ценных компонентов каталитической системы (чаще всего благородных металлов).
- •4.2.2 Выделение продуктов гомогенно-каталитической реакции.
- •4.3 Гидроформилирование алкенов (Оксосинтез)
- •4.3.1 Схемы с термической декобальтизацией (выделение кобальта в виде металла на поверхности твердой фазы носителя)
- •4.3.2 Солевые схемы (выделение металла в виде соли за счет экстракции)
- •4.3.3 Испарительные схемы (отделение продуктов за счет отгонки )
- •Оксосинтез в двухфазных системах вода-органический растворитель
- •4.4 Технология производства ацетальдегида
- •4.4.1 Механизм и кинетика Вакер-процесса.
- •4.4.2 Технология получения ацетальдегида
- •4.5 Технология производства уксусной кислоты.
- •4.6 Технология производства высших олефинов фирмы Шелл (shop process)
- •4.6.1 Олигомеризация
- •4.6.2 Гидроформилирование
- •4.6.3 Изомеризация
- •4.6.4 Метатезис
- •4.6.5 Технология shop процесса
3.2.4 Масс-спектрометрия
Масс-спектрометрия, наряду с вышеописанными методами УФ-, ИК-, ЭПР-, ЯМР-спектроскопии, является широко используемым методом изучения строения неизвестных веществ, в том числе катализаторов, компонентов каталитических систем, промежуточных и конечных продуктов каталитических процессов.
В этом методе состав и строение вещества определяют по набору осколков, образующихся при облучении образца пучком электронов с энергией 70 эВ в вакууме. При бомбардировке электронами молекулы образца расщепляются на ряд положительно заряженных ионов. Осколочные катионы разделяются в магнитном поле и фиксируются приемником, обеспечивая возникновение электрического сигнала для каждого катиона, пропорционального его относительной концентрации (интенсивности). Диаграмму «интенсивность сигнала – отношение массы к заряду соответствующего осколка» называют масс-спектром данного соединения. Большая часть ионов-осколков имеет заряд, равный единице. Интенсивность наибольшего сигнала принимают за 100%, а интенсивность всех остальных сигналов указывают относительно этого максимального сигнала в процентах. Набор осколков-катионов и их относительная интенсивность являются функцией природы данного вещества, относительной прочности его химических связей. Сравнение масс-спектра неизвестного вещества с масс-спектрами образцов сравнения или с масс-спектрами из соответствующей базы данных позволяет идентифицировать неизвестное вещество.
Например, при действии пучка электронов на молекулу метанола будут протекать следующие реакции
СН3ОН + ē → СН3ОН+·(M/z=32) + 2ē
СН3ОН+·→ СН2ОН+(M/z=31) + Н·
СН3ОН+·→ СН3+(M/z=15) + ОН·
СН2ОН+→ СНО+(M/z=29) + Н2
В первой реакции молекула метанола теряет электрон и превращается в катион с массой, равной массе метанола. Такие катионы называют молекулярными ионами. Если молекулярные ионы имеют время жизни ~10-6 с и более, то они регистрируются и по значению их массы можно определить молекулярную массу неизвестного вещества. Но это происходит не для всех веществ и зависит от их строения. Таким образом, масс-спектр метанола включает сигналы, соответствующие осколкам СН3+(M/z=15), СНО+(M/z=29), СН2ОН+(M/z=31) и молекулярного иона СН3ОН+·(M/z=32).
Вышеописанные методы эффективны для идентификации неизвестных продуктов при наличии чистых образцов неизвестных веществ и практически не эффективны для смесей. Процедура выделения неизвестного вещества из реакционной смеси и его очистка очень трудоемкие процедуры. Одним из методов, который широко используется для выделения, очистки и анализа веществ различной природы является хроматография. Для выделения и очистки применяют различные виды жидкостной хроматографии, а для анализа – тонкослойную хроматографию.
Наиболее эффективны оказались комбинированные методики, включающие метод разделения и спектральный метод: жидкостная хроматография – УФ-спектроскопия, газовая хроматография – масс-спектрометрия. Приборы, выпускаемые специально для таких методик, обеспечивают эффективное разделение образца сложной смеси и спектральный анализ каждого из входящих в смесь веществ в чистом виде. Это обеспечивает высокую эффективность идентификации неизвестных веществ.