
- •Химия и технология гомогенного катализа Конспект лекций Москва 2012
- •Предисловие
- •Общие проблемы катализа
- •1.1 Краткая история открытия каталитических реакций и теории катализа
- •Краткая история открытия каталитических реакций
- •1.2 Теории катализа
- •1.3 Классификации каталитических процессов и катализаторов
- •1.3.1 Классификация каталитических процессов
- •1.3.2 Классификации катализаторов
- •2. Выбор катализаторов
- •2.1 Современное содержание термина «активация»
- •2.1.1 Классификация комплексов
- •Карбеновые комплексы:
- •Карбиновые комплексы
- •2.2 Активация молекул
- •2.2.1 Молекула водорода
- •2.2.2 Молекула монооксида углерода
- •2.2.3 Активация алкенов и алкинов
- •2.2.3.1 Реакции координированных алкенов
- •2.2.3.2 Реакции координированных алкинов
- •2.2.4 Активация полярных молекул
- •2.3 Проблема выбора катализатора и возможные пути ее решения
- •2.3.1 Эмпирический подход.
- •2.3.2 Полуэмпирический метод.
- •2.3.3 Теоретический подход.
- •2.4 Требования к промышленным катализаторам
- •2.4.1 Активность (производительность)
- •2.4.2 Селективность.
- •2.4.3 Стабильность.
- •2.4.4 Наличие методик регенерации и утилизации
- •2.4.5 Воспроизводимость.
- •2.4.6 Экологичность.
- •2.4.7 Экономичность.
- •Технология гомогенного катализа
- •Методы приготовления и исследования гомогенных катализаторов
- •3.1 Приготовление гомогенных катализаторов
- •3.2 Методы исследования гомогенных катализаторов и процессов с их участием
- •3.2.1 Дифракционные методы
- •3.2.2 Электронографический анализ (эга)
- •3.2.3 Спектроскопические методы.
- •3.2.4 Масс-спектрометрия
- •Технология синтеза и разделения реакционных систем на основе гомогенных катализаторов
- •4.1 Выбор реактора
- •4.2 Методы разделения катализаторов и продуктов, используемые для гомогенно-каталитических реакционных систем
- •4.2.1. Выделение наиболее ценных компонентов каталитической системы (чаще всего благородных металлов).
- •4.2.2 Выделение продуктов гомогенно-каталитической реакции.
- •4.3 Гидроформилирование алкенов (Оксосинтез)
- •4.3.1 Схемы с термической декобальтизацией (выделение кобальта в виде металла на поверхности твердой фазы носителя)
- •4.3.2 Солевые схемы (выделение металла в виде соли за счет экстракции)
- •4.3.3 Испарительные схемы (отделение продуктов за счет отгонки )
- •Оксосинтез в двухфазных системах вода-органический растворитель
- •4.4 Технология производства ацетальдегида
- •4.4.1 Механизм и кинетика Вакер-процесса.
- •4.4.2 Технология получения ацетальдегида
- •4.5 Технология производства уксусной кислоты.
- •4.6 Технология производства высших олефинов фирмы Шелл (shop process)
- •4.6.1 Олигомеризация
- •4.6.2 Гидроформилирование
- •4.6.3 Изомеризация
- •4.6.4 Метатезис
- •4.6.5 Технология shop процесса
Общие проблемы катализа
ИСТОРИЯ ОТКРЫТИЯ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ. КЛАССИФИКАЦИИ КАТАЛИТИЧЕСКИХ ПРОЦЕССОВ И КАТАЛИЗАТОРОВ
1.1 Краткая история открытия каталитических реакций и теории катализа
Катализ – универсальное и очень разнообразное явление, широко распространенное в природе и используемое человечеством за тысячи лет до осознания сути каталитических процессов. Наилучшим примером служит ферментативный катализ. Люди используют биологические катализаторы – ферменты - тысячи лет в процессах брожения (для приготовления, например, молочно-кислых продуктов).
Что же такое катализ и катализатор? В литературе встречаются различные определения катализа и катализатора. Приведем некоторые из них.
В. Оствальд: Катализатор – это такое соединение, которое ускоряет химическую реакцию, не влияя на положение равновесия.
П. Сабатье: Катализатор – вещество или система, которая изменяет скорость реакции, участвуя в последовательности стадий, но не превращается в продукты.
Г.К. Боресков: Феноменологически катализ – это возбуждение химических реакций или изменение их скорости под влиянием веществ – катализаторов, многократно вступающих в промежуточное химическое взаимодействие с участниками реакции и восстанавливающих после каждого цикла промежуточных взаимодействий свой состав.
Последнее определение включает два существенных момента: катализатор входит в состав промежуточных соединений, но не фигурирует в стехиометрическом уравнении основной реакции и, следовательно, не влияет на равновесие основной реакции, и не расходуется в ней. Катализатор за счет участия в образовании интермедиатов обеспечивает протекание реакции по другому пути, имеющему более низкую наблюдаемую энергию активации, и значит, более высокую скорость превращения реагентов в продукты (см. рис. 1).
Слово «катализ», вероятно, впервые введено в 16 веке химиком А. Либавиусом в его учебнике «Алхимия» и имело значение «разложение» или «разрушение». В 1835 г. этот термин узаконен И. Берцелиусом для реакций, протекающих в присутствии посторонних соединений, которые сами как будто в реакции не участвуют. Точнее, Берцелиус писал о каталитической силе, приводящей к разложению тел. Примерно в то же время Митчерлих ввел термин «контактное действие».
Рис. 1. Энергетическая диаграмма, иллюстрирующая изменение энергии реагирующей системы вдоль координаты реакции.
1 – элементарная (некаталитическая) реакция, 2 – каталитическая реакция (Ео, Е1, Е2, Е3 – энергии активации некаталитической и первой, второй и третьей стадий каталитической реакций, соответственно).
На самом деле даже “небиологический”, т.е. неферментативный катализ был известен задолго до Либавиуса и тем более Берцелиуса. Первый известный нам пример небиологического каталитического процесса – синтез диэтилового эфира из спирта при участии серной кислоты (VIII в., Джабир ибн Хайам).
C2H5OH + HOC2H5 → H2O + C2H5OC2H5
Вторично эта реакция была открыта в 1540 г. Валерием Кордусом и получила технологическое оформление в работах С. Фробениуса.
В XVII и XVIII вв. во время создания научных основ химии было открыто несколько каталитических реакций с участием небиологических катализаторов. Так, в 1666 г. А. Лефебр и Н. Лемери разработали камерный способ синтеза серной кислоты, базируясь на предыдущих разработках. Для ускорения процесса использовали добавки нитратов металлов. Это XVII век. И только в конце следующего, XVIII века, механизм синтеза серной кислоты изучен М. Клеманом и Х. Дезормом. Они доказали, что в реакции участвуют не только реагенты (SO2 и O2 ), но и диоксид азота, образующийся в условиях процесса из добавленных нитратов:
SO2 + NO2 + H2O → NO + H2SO4
NO + 1/2O2 → NO2
Клеман и Дезорм указали, что оксиды азота – “только орудие для полного окисления серной кислоты”, и отметили два важных принципа катализа: нестехиометричность и цикличность действия оксидов азота.
Механизм вышеупомянутой реакции дегидратации этилового спирта в диэтиловый эфир изучал А. Геннель в лаб. М. Фарадея в 1828 г.
Краткая история открытия каталитических реакций представлена в таблице 1.
Таблица 1.