
- •Предмет, содержание, задачи токсикологической химии.
- •Краткий исторический очерк развития токсикологической химии.
- •Связь токсикологической химии с другими химическими, фармацевтическими и биологическими науками.
- •Вклад отечественных учёных в развитие токсикологической химии.
- •Организация судебно-медицинской и химико-токсикологической (судебно-химической) экспертизы в России.
- •Объекты химико-токсикологического исследования и вопросы, решаемые химико-токсикологическим анализом. Понятие «яд», «ядовитое вещество». Классификация ядов и отравлений.
- •Специфические особенности химико-токсикологического анализа.
- •Пути поступления чужеродных соединений в организм. Основные факторы, оказывающие влияние на всасываемость и распределение веществ в тканях и биологических средах организма.
- •Превращение и выделение чужеродных веществ из организма. Общая характеристика.
- •Общая характеристика методов исследования, применяемых в токсикологической химии (методы изолирования, очистки, качественного и количественного анализа).
- •11. Судебная химия – основной раздел токсикологической химии.
- •Документация химико-токсикологических экспертиз и правила её
- •Источники ошибок на основных этапах химико-токсикологического анализа.
- •Правила приёма вещественных (химических) доказательств на экспертизу.
- •Значение данных дознания, истории болезни и результатов судебно-медицинского исследования трупов для судебно-химической экспертизы.
- •Микрокристаллоскопия и кристаллооптика в токсикологической химии.
- •Методы количественного определения. Значение этих определений для оценки результатов исследования (показать на примере «металлических ядов»).
- •Реакции отрицательного судебно-химического значения.
- •Классификация ядовитых и сильнодействующих веществ в токсикологической химии.
- •Охрана окружающей среды и перспективы развития токсикологической химии на современном этапе.
- •Классификация наркотических и психотропных веществ. Основные особенности их химико-токсикологического анализа.
- •Современные физико-химические методы, применяемые в анализе наркотических и психотропных веществ. Основные требования к ним.
- •Фармакокинетика, метаболизм, особенности химико-токсикологического анализа опиатов.
- •Фармакокинетика, метаболизм, особенности химико-токсикологического анализа каннабиноидов.
- •Перспективы развития и совершенствования методов судебно-химических исследований вещественных доказательств.
- •26. Теоретические основы изолирования ядовитых и сильнодействующих веществ из биологического материала дистилляцией водяным паром.
- •27.Синильная кислота. Качественное обнаружение и количественное определение.
- •28. Химико-токсикологическое значение синильной кислоты и её производных.
- •29. Ядовитые галогенпроизводные (хлороформ, хлоралгидрат). Изолирование.
- •30. Ядовитые галогенпроизводные (четыреххлористый углерод, 1,2-дихлорэтан).
- •31. Альдегиды (формалин, формальдегид). Изолирование, качественное обнаружение и количественное определение. Токсикологическое значение и метаболизм.
- •32. Ацетон. Изолирование, качественное обнаружение и количественное
- •33. Метиловый спирт. Изолирование, качественное обнаружение и количественное
- •34. Этиловый спирт. Изолирование. Качественное обнаружение и количественное
- •35. Физико-химические методы количественного определения этилового спирта, применение в судебно-химическом анализе.
- •36. Значение этапа количественного определения этилового спирта при химико-токсикологическом исследовании биологических объектов.
- •37. Реакции отличия метилового и этилового спирта. Методы экспресс-анализа спирта. Пробы Раппопорта и Шинкаренко.
- •38.Спирты (амиловый, этиленгликоль). Качественное обнаружение. Токсикологическое значение. Метаболизм.
- •39. Уксусная кислота. Изолирование. Качественное обнаружение и количественное определение. Токсикологическое значение и метаболизм.
- •40. Нитробензол в химико-токсикологическом отношении.
- •41. Фенолы (фенол, трикрезол) в химико-токсикологическом отношении.
- •42. Анилин в химико-токсикологическом отношении.
- •43. Метод изолирования подкисленным спиртом. Его достоинства и недостатки.
- •44. Метод изолирования подкисленной водой. Вклад отечественных учёных в разработку этого метода, его достоинства и недостатки.
- •45. Частный метод изолирования подкисленной водой в.Ф. Крамаренко. Влияние рН среды и др. Факторов на изолирование и экстрагирование алкалоидов.
- •46. Метод изолирования подщелоченной водой, его достоинства и недостатки.
- •47. Салициловая кислота. Изолирование, качественное обнаружение и количественное обнаружение. Токсикологическое значение и метаболизм.
- •48. Химико-токсикологическое значение производных барбитуровой кислоты. Методы изолирования, очистки барбитуратов.
- •49. Качественное обнаружение барбитуратов в судебно-химическом анализе.
- •50. Количественное определение барбитуратов в судебно-химическом анализе.
- •51. Спектрофотометрическое определение производных барбитуровой кислоты в химико-токсикологическом анализе.
- •52. Токсикологическое значение и метаболизм барбитуратов.
- •53. Фенацетин. Качественное обнаружение и количественное определение.
- •54. Предварительные химико-токсикологические исследования при наличии алкалоидов (общеалкалоидные реакции).
- •55. Методы изолирования, очистки и обнаружение алкалоидов.
- •56. Алкалоиды, производные пиридина и пиперидина (кониин, ареколин). Изолирование, качественное обнаружение и количественное определение. Токсикологическое значение и метаболизм.
- •57. Алкалоиды, производные пиридина и пиперидина (никотин, анабазин) в химико-токсикологическом отношении.
- •58. Пахикарпин в химико-токсикологическом отношении.
- •59. Алкалоиды, производные тропана (атропин, гиосциамин) в химико-токсикологическом отношении.
- •60. Алкалоиды, производные тропана (кокаин) в химико-токсикологическом отношении.
- •61. Производные аминокислот ароматического ряда (новокаин, дикаин) в химико-токсикологическом отношении.
- •62. Алкалоиды, производные хинолина (хинин и его соли). Изолирование, качественное обнаружение и количественное определение. Токсикологическое значение и метаболизм.
- •63. Алкалоиды, производные изохинолина (морфин). Изолирование. Качественное обнаружение и количественное определение. Токсикологическое значение и метаболизм.
- •64. Заменители морфина (кодеин, этилморфина гидрохлорид, апоморфин) в химико-токсикологическом отношении.
- •65. Доказательства отравления опием.
- •66. Алкалоиды, производные бензилизохинолина (папаверин, наркотин) в химико-токсикологическом отношении.
- •67. Алкалоиды, производные индола (резерпин, секуренин) в химико-токсикологическом отношении.
- •69. Алкалоиды, производные пирролизидина (платифиллин) в химико-токсикологическом отношении.
- •70. Алкалоиды, производные пиримидина (кофеин, теобромин, теофиллин) в химико-токсикологическом отношении.
- •71. Ациклические алкалоиды (эфедрин). Изолирование, обнаружение, определение, значение, метаболизм.
- •72. Производные пиразола (антипирин, амидопирин) в химико-токсикологическом отношении.
- •73. Производные 1,4 - бензодиазепина в химико-токсикологическом отношении.
- •74. Производные фенотиазина в химико-токсикологическом отношении.
- •75. Общая характеристика пестицидов (ядохимикатов) в химико-токсикологическом отношении. Классификация.
- •76. Пестициды из группы галогенпроизводных (ддт, гхцг, гептахлор) в химико-токсикологическом отношении.
- •77. Пестициды из класса фенолов (днок, диносеб, зоокумарин). Качественное обнаружение и количественное определение. Токсикологическое значение и метаболизм.
- •78. Пестициды класса фосфорорганических соединений (хлорофос, карбофос) в химико-токсикологическом отношении.
- •79. Пестициды, производные карбаминовой кислоты (севин) в химико-токсикологическом отношении.
- •80. Пестициды, производные тиокарбаминовой, дитиокарбаминовой кислот (крысид, тмтд) в химико-токсикологическом отношении.
- •81. Металлоорганические пестициды (гранозан, меркуран, меркургексан) в химико-токсикологическом отношении.
- •82. Неорганические ядохимикаты (фосфид цинка, фторид натрия) в химико-токсикологическом отношении.
- •83. Общая характеристика сероводородного и дробного методов анализа «металлических» ядов.
- •84. Вклад отечественных учёных в разработку химико-токсикологического анализа «металлических ядов».
- •85. Теоретические и методологические основы дробного метода анализа «металлических» ядов, разработанные а.Н. Крыловой.
- •86. Органические реагенты, предложенные а.Н. Крыловой для анализа «металлических» ядов дробным методом.
- •87. Последовательность проведения дробного метода анализа на «металлические» яды.
- •88. Частые методы минерализации органических веществ.
- •89. Минерализация серной и азотной кислотами органических веществ. Достоинства и недостатки.
- •90. Минерализация органических веществ азотной, серной, хлорной кислотами. Достоинства и недостатки метода.
- •91. Методы удаления окислителей из минерализата.
- •92. Исследование осадка после минерализации азотной, серной кислотами (свинец, барий).
- •93. Свинец и тетраэтилсвинец. Качественное обнаружение и количественное определение. Токсикологическое значение.
- •94. Барий в химико-токсикологическом отношении.
- •95. Марганец в химико-токсикологическом отношении.
- •96. Хром в химико-токсикологическом отношении.
- •97. Серебро. Изолирование, качественное обнаружение и количественное определение, поступление, распределение, выведение из организма, токсикологическое значение.
- •98. Медь в химико-токсикологическом отношении.
- •99. Висмут в химико-токсикологическом отношении.
- •100. Сурьма и таллий в химико-токсикологическом отношении.
- •101. Кадмий в химико-токсикологическом отношении.
- •102. Цинк в химико-токсикологическом отношении.
- •103. Ртуть, деструктивные методы изолирования. Качественное и количественное значение. Органические препараты ртути (этилмеркурхлорид).
- •104. Мышьяк в химико-токсикологическом отношении. Общая схема анализа.
- •105. Определение мышьяка в аппарате Марша.
- •106. Определение мышьяка в аппарате Зангер-Блека.
- •107. Изолирование веществ из биологического материала диализом (серная, азотная, соляная кислоты). Качественное обнаружение и количественное определение, токсикологическое значение.
- •108. Изолирование веществ из биологического материала диализом (аммиак, едкий натр, щелочные соли). Качественное обнаружение и количественное определение, токсикологическое значение.
104. Мышьяк в химико-токсикологическом отношении. Общая схема анализа.
Соединения мышьяка
Токсикологическое значение соединений мышьяка
Сильнодействующий яд, широко распространенный в промышленности. Ангидрид мышьяковистой кислоты применяется в медицине, сельском хозяйстве в качестве инсектицида, в стекольной и кожевенной промышленностях. Арсениты и арсенаты некоторых металлов применяются в качестве ядохимикатов. Определенное токсикологическое значение имеют органические соединения мышьяка, применяемые в медицине (новарсенол, осарсол и др.) Известны случаи отравления мышьяковитым водородом. Очень токсичными являются боевые отравляющие вещества (люизит, адамсит и др.), содержащие мышьяк.
Соединения пятивалентного мышьяка в организме превращаются в более токсичные трехвалентные. Благодаря отсутствию вкуса и запаха мышьяк в течение многих веков применяли в преступных целях. Чистый металлический мышьяк не ядовит, но, окисляясь, он превращается в ядовитые соединения. Более ядовитым является ангидрид мышьяковистой кислоты, имеющий вид тяжелого белого порошка или стекловидных кусков. Менее ядовит ангидрид мышьяковой кислоты.
Соединения мышьяка обладают как местным, так и общим действием на организм. Введенный внутрь мышьяк связывается с SH — группами ферментом и нарушает процессы окислительного фосфорилирования. Поступивший в организм мышьяковистый водород проникает преимущественно в эритроциты, в результате чего наступает их гемолиз. Это приводит к возникновению желтухи, закупорке почечных канальцев. Соединения мышьяка местно действуют прижигающе, вызывая воспаление и омертвение тканей. Различают две формы отравления этим металлом: желудочно-кишечную и нервную, но чаще наблюдается смешанная форма. При первой форме отравления появляются металлический привкус во рту, жжение в зеве, жажда, сильные боли в животе, неукротимая рвота, тяжелая диарея. При нервной форме в период от нескольких дней до нескольких недель развивается типичный мышьяковый неврит, который начинается с головной боли, головокружения, затем развивается обморочное состояние, бред, судороги, с парестезией конечностей и языка, иногда стойкими параличами и, при упадке сердечной деятельности, наступает смерть, в большинстве случаев через четыре — шесть часов. Мышьяк выводится с мочой, калом, слюной и молоком матери. Через неповрежденную кожу мышьяк и его соли не всасываются.
Мышьяк способен кумулировать в организме. При остром отравлении он накапливается в основном в паренхиматозных органах, а при хронических — в костях и ороговевших тканях (волосы, ногти, кожа). Содержание мышьяка в органах человека колеблется в пределах 0,008—0,2 мг на 100 г органа, а в коже и волосах может достигать 600 мкг в 100 г.
105. Определение мышьяка в аппарате Марша.
Проба Марша (основное исследование минерализата на мышьяк). Пробу проводят в специальном приборе с трубкой Марша (из кварцевого стекла), трубка 40 см, диаметр 8-10 мм, имеет расширенные и суженные места.
В колбу аппарата Марша вносят 10 г «купрированного» цинка, а в капельную воронку наливают 30 мл 4 М раствора кислоты серной. Из капельной воронки небольшими порциями (по 4—5 мл) несколько раз приливают раствор серной кислоты. Спустя 15—20 мин после начала взаимодействия цинка с кислотой серной проверяют полноту вытеснения воздуха из аппарата Марша. При наличии хотя бы следов воздуха в аппарате во время сжигания газов, выходящих из трубки, может произойти взрыв. После полного вытеснения воздуха из аппарата в капельную воронку вносят 20 мл минерализата и 2 мл 10 % раствора олова (II) хлорида в 50 % растворе кислоты серной. Содержимое капельной воронки в течение 30—40 минут небольшими порциями вливают в колбу аппарата Марша.
Проба основана на восстановлении соединений мышьяка атомарным водородом в момент его выделения и последующем разложении образовавшегося при этом арсина:
H3AsO3 + 6H = AsH3 + 3H2O
2AsH3 = 2As + 3H2
В процессе исследования в аппарате Марша выполняют ряд реакций и наблюдений:
1. Зажигают водород, выходящий из трубки аппарата Марша. При наличии мышьяка в минерализате пламя приобретает синеватый цвет, и имеет характерный для мышьяковистого водорода запах чеснока. Проверяют наличие буровато-серого налета в восстановительной трубки или при внесении холодных частей фарфоровой чашки или фарфоровой пластинки в указанное выше пламя.
2. Проба Гутцейта. Восстановительную трубку Марша поворачивают на 180° и погружают в 5 % раствор нитрата серебра, прибавляют слабо подщелоченный раствор гидроксида аммония, при этом отмечают потемнение раствора в результате образование металлического серебра:
3AgNO3 + AsH3 = AsAg3 + 3HNO3
AsAg3 + 3AgNO3 = AsAg3*3AgNO3
AsAg3*3AgNO3 + 3H2O = 6Ag + H3AsO3 + 3HNO3
3. В случае получения плотного налета в восстановительной трубке, его подвергают дополнительному исследованию. Восстановительную трубку прибора отделяют, и место налета осторожно нагревают на маленьком пламени горелки. Металлический мышьяк при этом окисляется кислородом воздуха до мышьяковистого ангидрида. Мышьяковистый ангидрид в виде белого налета осаждается на холодных частях восстановительной трубки.
4. При рассмотрении налета под микроскопом при наличии мышьяка видны характерные кристаллы мышьяковистого ангидрида в виде октаэдров. Это исследование является одним из наиболее убедительных доказательств наличия мышьяка в минерализате.
5. В случаях, когда налет мышьяковистого ангидрида в трубке Марша не имеет ясно выраженного кристаллического строения, что бывает при количествах мышьяка менее 0,05 мг, поступают следующим образом: налет мышьяковистого ангидрида помещают на предметное стекло и растворяют в 2—3 каплях 50 % раствора кислоты азотной. Раствор осторожно выпаривают досуха. Сухой остаток растворяют в 1—2 каплях 10 % раствора кислоты хлористоводородной и вносят 1—2 кристалла цезия хлорида (CsCI), а затем если через некоторое время осадок не появляется (отсутствие сурьмы), добавляют несколько кристаллов калия йодида.
При наличии в исследуемом объекте мышьяка образуется ярко-красный осадок, имеющий под микроскопом вид правильных шестиконечных звездочек и шестиугольных табличек, а далее, при добавлении пиридина к Cs2AsI5 • 2,5 Н2О вид правильных шестилучных звездочек и шестиугольников. Сурьма в аналогичных условиях сначала образует бесцветные характерные кристаллы многогранники (Cs2SbI5 • 2,5 Н2О). При действии пиридина на красный осадок Cs2AsI5 • 2,5 Н2О последний растворяется, а по краям капли образуются зеленовато-желтые игольчатые кристаллы Cs2SbI5•2,5 Н2О. Микрокристаллическая реакция образования Cs2AsI5 • 2,5 H2О позволяет не только обнаружить малые количества мышьяка, но и отличить его от сурьмы.