Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методичка физика.doc
Скачиваний:
12
Добавлен:
25.09.2019
Размер:
6.27 Mб
Скачать

Экспериментальная часть

Приборы и оборудование: наклонная плоскость, секундомер, 2 цилиндра.

Порядок выполнения работы

  1. Линейкой измерьте длину пути тела S по наклонной плоскости на участке АВ. Для этого зафиксируйте начальное положение тела на наклонной плоскости (точка А, рис.7.1) и конечное положение – точка В.

  2. Измерьте высоту (рис. 7.1).

  3. Измерьте время движения сплошного цилиндра по наклонной плоскости между точками А и В. Повторите измерения времени не менее 5 раз.

  4. Взвесьте исследуемое тело.

  5. Измерьте штангенциркулем диаметр цилиндра .

  6. Проделайте действия, указанные в пунктах 1-4, с полым цилиндром.

  7. Измерьте его внутренний и внешний диаметры.

  8. Запишите результаты измерений в таблицу 7.1.

Таблица 7.1

, , ,

Сплошной цилиндр

,

,

Полый цилиндр

,

,

,

,

c

,

c

,

,

,

,

c

,

c

,

,

,

1

2

3

4

5

Ср.

  1. Рассчитайте среднее время tср для каждой серии опытов.

  2. По формуле (7.7) вычислите экспериментальное значение момента инерции тела.

  3. Вычислите по формуле (7.8) теоретический момент инерции тела и результаты запишите в таблицу. Сравните его с экспериментальным значением и укажите причину возможного несоответствия.

  4. Вычислите относительную и абсолютную погрешности моментов инерции и .

  5. Результаты вычисления и представьте в виде

.

Контрольные вопросы

  1. Сравните формулировки 2-го закона Ньютона – для поступательного и вращательного движения тела.

  2. Что такое момент инерции твердого тела и от чего он зависит?

  3. Что такое плоское движение твердого тела и что характерно для такого движения?

  4. Объясните, почему кинетическую энергию тела можно представить в виде уравнения (7.4).

  5. Представьте вывод формулы для момента инерции на основе закона сохранения энергии (7.7)

  6. Выведите формулу (7.7), используя уравнения движения (7.9), (7.10).

  7. Объясните, какую роль играет сила трения покоя и получите условие скатывания цилиндра без скольжения (7.15).

  8. Если учесть действие сил трения качения, к каким изменениям при определении момента инерции тела это приведет?

Используемая литература

[3] §4.3; [5] §7.3; [7] §8;13; [10] §5.8.

Лабораторная работа 1-08

Исследование динамики вращательного движения на маятнике Обербека

Цель работы: проверка основного уравнения динамики вращательного движения, определение момента инерции маятника Обербека.

Теоретическое введение

При вращении тела вокруг закрепленной оси все его точки описывают окружности различного радиуса и, следовательно, имеют различные перемещения, скорости и ускорения. Тем не менее можно описать вращательное движение всех точек тела одинаковым образом. Для этого используют следующие кинематические характеристики движения: угол поворота , угловую скорость и угловое ускорение . Эти характеристики будут одинаковы для любой точки абсолютно твердого тела. Модуль вектора поворота равен величине угла поворота Δφ; вектор поворота направлен по оси вращения по правилу буравчика (правого винта).

Угловая скорость тела характеризует быстроту вращения. Она равна отношению вектора элементарного угла поворота тела к продолжительности этого поворота:

. (8.1)

Быстроту изменения угловой скорости во времени характеризует угловое ускорение

. (8.2)

При возрастании угловой скорости ω угловое ускорение совпадает с ней по направлению, при убывании – направлено в противоположную сторону.

Найдем связь между линейными и угловыми величинами. Величина линейного перемещения точки, вращающейся по окружности радиуса :

. (8.3)

Разделив обе части уравнения (8.3) на , получим: . Так как производная пути по времени – это величина скорости: , а (8.1), то:

. (8.4)

Теперь продифференцируем (8.4) по времени: , или:

, (8.5)

где – касательное (тангенциальное) ускорение, определяющее быстроту изменения модуля скорости :

. (8.6)

Динамика твердого тела.

Моментом силы относительно точки О называется физическая величина, равная векторному произведению радиус-вектора , проведенного из точки О в точку приложения силы, на вектор силы :

. (8.7)

Направление момента силы определяется правилом буравчика (рис.8.1), величина момента силы

, (8.8)

г де – угол между радиус-вектором точки приложения силы и вектором силы . Момент силы относительно оси характеризует способность силы вращать тело вокруг этой оси. Составляющая силы, параллельная закреплённой оси, вращения тела вызвать не может, а напряжения, при этом возникающие в оси, нас не интересуют. Тогда достаточно рассмотреть силы, направления которых перпендикулярны оси вращения ОО’ (рис.8.1). Определим плечо силы относительно оси ОО’ как расстояние от оси вращения до линии действия силы, тогда

, . (8.9)

Более того, поворот тела с закрепленной осью вращения может быть вызван только касательной составляющей силы , причем эта составляющая тем успешнее осуществит поворот, чем больше ее плечо r:

, (8.10)

так как .

Пусть твердое тело разбито на отдельные элементарные массы Δm. Выразим касательную составляющую равнодействующей сил, приложенных к этой точке, по второму закону Ньютона:

. (8.11)

Учитывая (8.5) для касательного ускорения, получим из (8.10) и (8.11):

. (8.12)

Скалярная величина

, (8.13)

равная произведению массы материальной точки на квадрат ее расстояния до оси, называется моментом инерции материальной точки относительно оси.

Векторы и совпадают по направлению с осью вращения, связаны с направлением вращения по правилу буравчика, поэтому равенство (8.12) можно переписать в векторной форме:

. (8.14)

Уравнение (8.14) является основным законом динамики вращательного движения для материальной точки. Соотношение, аналогичное (8.12), можно записать для каждой точки тела, и затем просуммировать по всем точкам, тогда (с учетом того, что угловое ускорение одинаково для всех точек и его можно вынести за знак суммы):

. (8.15)

В левой части равенства стоит сумма моментов всех сил (и внешних, и внутренних), приложенных к каждой точке тела. Но по третьему закону Ньютона силы, с которыми точки тела взаимодействуют друг с другом (внутренние силы), равны по величине и противоположны по направлению и лежат на одной прямой, поэтому их моменты компенсируют друг друга. Таким образом, в левой части (8.15) остается суммарный момент только внешних сил.

Сумма произведений элементарных масс на квадрат их расстояний от оси вращения называется моментом инерции твердого тела относительно данной оси:

. (8.16)

Момент инерции твердого тела является мерой инертных свойств твердого тела при вращательном движении и аналогичен массе тела во втором законе Ньютона. Он зависит не только от массы тела, но и от ее распределения относительно оси (в направлении, перпендикулярном оси). В случае непрерывного распределения массы сумма в (8.16) сводится к интегралу по всему объему тела:

. (8.17)

Моменты инерции для некоторых однородных тел относительно осей симметрии тел приведены в работе 1-07.

Таким образом, угловое ускорение твердого тела прямо пропорционально суммарному моменту внешних сил, приложенных к телу, и обратно пропорционально моменту инерции тела относительно оси вращения

. (8.18)

Это – основной закон динамики твердого тела. Он аналогичен второму закону Ньютона при поступательном движении

(8.19)

и позволяет определить угловое ускорение твердого тела.

Подсчет момента инерции тела относительно произвольной оси облегчается применением теоремы Штейнера: момент инерции тела относительно любой оси равен сумме момента инерции относительно оси, параллельной данной и проходящей через центр масс тела, и произведения массы тела на квадрат расстояния между осями

. (8.20)