Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
667345_32A6D_ivanova_l_a_red_tehnologiya_lekars...doc
Скачиваний:
73
Добавлен:
14.09.2019
Размер:
3.98 Mб
Скачать

Глава 20 суспензии и эмульсии (suspensiones ет emulsa)

Определение лекарственных форм - суспензии и эмульсии как систем гетерогенных, механизм стабилизирующего действия ВМС и ПАВ, их классификацию и характеристику см. том 1.

В данной главе найдут отражение особенности промышленного производства суспензий и эмульсий.

Производство суспензий и эмульсий. Получение суспензий и эмульсий на крупных фармацевтических предприятиях осуществляется разными способами: интенсивным механическим перемешиванием с помощью быстроходных мешалок и РПА; размолом твердой фазы в жидкой среде на коллоидных мельницах, ультразвуковым диспергированием с использованием магнитострикционных и электрострикцион-ных излучателей. Микрокристаллические взвеси получают также конденсационным способом, направленной кристаллизацией при смешивании растворов в определенных условиях температурного режима, характера перемешивания, значения рН среды и т. д.

Твердое вещество предварительно измельчают до мелкодисперсного состояния на специальных машинах, готовят концентрированную суспензию перемешиванием в смесителях, затем многократно диспергируют на коллоидных мельницах или на ультразвуковых и других установках. Для «сухих» суспензий, представляющих собой смесь лекарственного и вспомогательных веществ, образующих взвесь после добавления воды (в аптеке или домашних условиях), каждый ингредиент измельчают отдельно и просеивают через тонкое сито. После смешивания ингредиентов во избежание расслоения смесь вновь просеивают. Полученную готовую продукцию подвергают анализу в соответствии с требованиями НТД, стандартизуют и фасуют.

Для механического диспергирования применяют пропеллерные и турбинные мешалки закрытого и открытого типов. Пропеллерные мешалки создают круговое и осевое движение жидкости со скоростью 160- 1800 об/мин и применяются для маловязких систем. В процессе перемешивания часто используют вакуум для удаления пузырьков воздуха, которые понижают устойчивость системы. Более мелко диспергированные и стойкие суспензии и эмульсии можно получить с помощью турбинной мешалки, создающей турбулентное движение жидкости. Мешалки открытого типа представляют собой турбинки (рис. 20.1, а, б) с прямыми, наклонными под разными углами или криволинейными лопастями.

Мешалки закрытого типа - это турбинки, установленные внутри неподвижного кольца с лопастями, изогнутыми под углом 45-90° (рис. 20.1, в). Жидкость входит в мешалку в основании турбинки, где расположены круглые отверстия, и под действием центробежной силы выбрасывается из нее через прорези между лопастями кольца, интенсивно перемешиваясь во всем объеме реактора. Скорость вращения турбинки 1000-7000 об/мин.

Рис. 20.1. Устройство турбинных мешалок, а, б - открытого; в - закрытого типа.

Рис. 20.2. Устройство РПА проточного типа.

1 - приводной вал; 2 -- рогор; 3 - патрубок выхода суспензии, 4 - крышка-статор; 5 - патрубок л хода.

В промышленной технологии суспензионных и эмульсионных препаратов широкое распространение нашли РПА. При получении дисперсных систем РПА могут быть непосредственно погруженными в реактор с перемешиваемой средой, иногда в дополнение к имеющейся в нем мешалке. РПА погружного типа имеют ротор и статор с концентрически расположенными на них зубцами или цилиндрами с отверстиями и по форме напоминают мешалки. РПА проточного типа устанавливается вис реактора (рис. 20.2). Ротор и статор его заключены в корпус, имеющий входной и выходной патрубки. Обрабатываемая смесь поступает по осевому патрубку внутрь аппарата и под действием центробежной силы выбрасывается через выходной патрубок. Движение жидкости в аппарате осуществляется от центра к периферии. Существуют РПА, в которых движение обрабатываемой среды имеет противоположное направление, от периферии к центру, и диспергированная жидкость выходит через осевой патрубок.

В процессе работы РПА развиваются интенсивные механические воздействия на частицы дисперсной фазы, вызывающие турбулизацию и пульсацию смеси. Для повышения эффективности диспергирования разработаны конструкции РПА с раздельной подачей компонентов обрабатываемой среды по специальным каналам в теле статора, с дополнительными рабочими элементами в виде лопастей на роторе или статоре, с диспергирующими телами (шары, бисер, кольца), свободно размещенными в полостях ротора, с роликовыми подшипниками в обоймах. Диспергирование в РПА такого типа происходит за счет соударения свободно размещенных тел с вращающимися и неподвижными элементами, а также путем раздавливания и истирания материала в местах контакта роликов с вращающимися и неподвижными обоймами. Распространены РПА с рифлеными поверхностями рабочих частей с различного рода зазорами между ними. Чем меньше зазор между вращающимися и неподвижными цилиндрами, тем выше степень дисперсности. Наиболее приемлем для получения мелко измельченных дисперсий радиальный зазор в 0,15- 0,3 мм.

Рис. 20.3. Устройство фрикционной коллоидной мельницы.

1 - осгювлние с коническим гиодо.и; 2 - отверстие в гнездо; 3 - jtornp;

4- микрометрический спит.

Значительно повышается эффективность диспергирования в РПА с увеличением концентрации суспензии, так как измельчение происходит не только за счет РПА, но и путем интенсивного механического трения частиц дисперсной фазы друг с другом. Полученная концентрированная суспензия смешивается затем с остальной частью дисперсионной среды до получения требуемого готового продукта.

Рис. 20.4. Устройство коллоидной мельницы ударною тши.

1 - nwpnjc; 2 - ДИСК. 3--1 - 1Ы.1ЫШ.

С помощью РПА можно совмещать операции диспергирования порошкообразных веществ и эмульгирования смесей. Таким образом, использование РПА обеспечивает получение многофазных гетерогенных систем - эмульсионно-суспензионных смесей, таких как линимент стрептоцида, синтомицина и т. д.

Применение РПА в химико-фармацевтической промышленности дает возможность получения высококачественной продукции, повышения производительности труда, сокращения непроизводительных расходов и т. д.

Для получения суспензий и эмульсий применяют коллоидные мельницы, работающие по принципу истирания твердых частиц, фрикционные (рис. 20.3), удара (рис. 20.4) или истирания и удара (рис. 20.5), кавитации (рис. 20.6).

Измельчение осуществляется в основном в жидкой среде. Рабочие поверхности мельниц гладкие или рифленые, по форме в виде усеченного конуса - ротора, вращающегося в коническом гнезде - статоре, или в виде плоских дисков, из которых один неподвижен; или оба диска вращаются в разные стороны. На дисках укреплены пальцы или имеются канавки.

При работе фрикционной мельницы ротор вращается со скоростью до 20 000 об/мин, диспергируемая смесь засасывается в щель между ротором и статором, размер которой регулируется микровинтом и составляет 0,025-0,05 мм. Смесь многократно прогоняется через щель до получения суспензии с очень небольшим размером частиц.

Рис. 20.5. Устройство роторно-бильной коллоидной мельницы.

1 - корпус, 2 - штуцер для ввода суспенани; 3 - ротор; 4 - билльг, 5 - кошрударники;

6 - штуцер для вывода готовой продукции.

Рис. 20.6. Устройство виброкавитационной коллоидной мельницы.

1 - корпус; 2 - статор; 3 - ротор; 4 - канавки ото поверхности ротора и статора; 5 - штуцер для ввода суспензии;

6 - штуцер для вызола готовой продукции.

В коллоидную мельницу, работающую по принципу удара, смесь подается между вращающимся диском и корпусом с насаженными на них пальцами. При вращении диска частицы дисперсной фазы подвергаются мощному гидравлическому воздействию, возникающему в результате бесчисленных ударов пальцев по жидкости, образуя тонкую суспензию или эмульсию.

Весьма эффективными в производстве эмульсий и суспензий являются устройства для ультразвукового диспергирования. При озвучивании гетерогенных жидкостей в зонах сжатия и разрежения возникает давление. Избыточное давление, создаваемое ультразвуковой волной, накладывается на постоянное гидростатическое давление и суммарно может составлять несколько атмосфер. В фазу разрежения во всем объеме жидкости, особенно у границ раздела фаз, в местах, где имеются пузырьки газа и мельчайшие твердые частицы, образуются полости, кавитационные пузырьки. При повторном сжатии кавитационные пузырьки захлопываются, развивая давление до сотен атмосфер. Образуется ударная волна высокой интенсивности, которая приводит к механическому разрушению твердых частиц и вырывает с поверхности раздела фаз небольшие объемы жидкости, распадающиеся на мелкие капельки и снова входящие в нее. В процессе озвучивания системы происходит не только диспергирование частиц, но и коагуляция, если превзойден предел интенсивности ультразвука и вследствие этого нарушена целостность защитных слоев частиц дисперсной фазы. С введением стабилизирующих веществ эффективность эмульгирующего действия ультразвука резко возрастает, повышается и степень дисперсности.

Существует определенная зависимость между интенсивностью ультразвука и типом получаемой эмульсин. При низкой интенсивности ультразвука образуется эмульсия типа масло в воде, с увеличением се - вода в масле.

Для получения ультразвуковых волн используют различные аппараты и установки, генерирующие ультразвуковые колебания. Источниками ультразвука могут быть механические и электромеханические излучатели, последние подразделяют на электродинамические, магнитострикционные и электрострикциониые.

К преобразователям механической энергии в ультразвуковую относится жидкостной свисток.

Принцип его работы заключается в подаче под давлением струи жидкости через сопло на острие закрепленной в двух точках пластинки (рис. 20.7). Под ударом струи жидкости пластинка колеблется и излучает два пучка ультразвука, направленных перпендикулярно к ее поверхности. При получении эмульсин жидкостной свисток помещают в сосуд с дисперсионной средой и через него под давлением в несколько атмосфер подают дисперсную фазу. Частота колебаний, возбуждаемых излучателем, составляет около 30 кГц.

К электродинамическим излучателям относится высокочастотный ротационный аппарат, построенный по типу турбинной мешалки. Возбудимый им ультразвук имеет низкую интенсивность.

Рис. 20.7. Жидкостной свисток (схема).

1 - сопло, 2 - ичб(ыцио1шая пластично; 3 - пучки ультроэауха.

Магнитострикционные излучатели (рис. 20.8) представляют собой вибрационные устройства, состоящие из магиитопровода (металлического стержня) с обмоткой, вмонтированного в сосуд с диспергируемой средой. Магнитопровод изготавливают из ферромагнитных металлов, различных сплавов и других материалов, способных менять линейные размеры при намагничивании. Такими свойствами обладают никель, железо, кобальт, нержавеющая сталь, сплавы в системах железо - никель, железо - кобальт и др. Для уменьшения потерь на вихревые токи магнитопровод изготавливают из тонких изолированных друг от друга пластин толщиной 0,1-0,3 мм, покрытых никелем. Во избежание повышения температуры при работе магнитостриктора внутри металлического стержня оставляют узкий канал, через который для его охлаждения циркулирует холодная вода. При пропускании по обмотке переменного тока соответствующей частоты возникает магнитное поле и происходит деформация магнитопровода по его продольной оси. Образуются ультразвуковые колебания, размах которых увеличивается, когда излучатель работает в условиях резонанса возбуждаемых частот и собственных колебаний стержня.

Рис.20.8. Устройство магннтострнкцнонного излучателя.

1 - сосуд; 2 - никелевый стержень; 3 - муфта; 4 - обмотка для пропускания переменного тока.

Электрострикционные (пьезоэлектрические) излучатели представляют собой устройства, действие которых основано на пьезоэлектрическом эффекте, используются при получении ультразвука высокой частоты, от 100 до 500 кГц. Пьезоэлементами служат пластинки, изготовленные из кварца или других кристаллов, колеблющихся по толщине. Эти пластинки имеют прямоугольную форму, размер их не менее 10 X 15 X 1 мм3. Одна из граней пластинки должна быть параллельна оптической оси кристалла, другая - одной из его электрических осей. Для создания резонанса частот пластинка с обеих сторон снабжается металлическими обкладками. При сжатии или растяжении таких пластинок вдоль электрической оси, на их поверхности возникают противоположные электрические заряды. Это явление называется пьезоэффек-том. При наложении электрического поля пластинка испытывает деформацию растяжения (при отрицательном заряде) или сжатия (при положительном заряде), т. е. в переменном электрическом поле прьезоквар-цевая пластинка совершает резонансные колебания (обратный пьезоэлектрический эффект). Для повышения интенсивности излучателя изменяют форму пластинки и применяют вогнутые, сферические и цилиндрические излучатели.

Схема диспергирования с помощью электрострик-ционного излучателя представлена на рис. 20.9. Пьезоэлектрический элемент (1) устанавливается в масляной бане на специальном механизме (2) (масло играет роль изолирующего агента и является хорошим проводником акустической энергии). Над ним на расстоянии около 5 мм закрепляется колба с диспергируемыми веществами. К пьезоэлементу (металлическим обкладкам пластинки) подводится источник переменного тока высокой частоты через газотронный выпрямитель н генератор, чтобы направление тока совпало с электрической осью элемента. Чередующиеся сжатия и разрежения в масле от пьезоэлемента передаются через стекло колбы в диспергируемую систему. Для предохранения от перегрева содержимого колбы вокруг нее размещают змеевик для пропускания холодной воды.

Рис. 20.9. Устройство электрострикционного излучателя.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]