
- •Глава 1
- •§1.Свойства жидкостей
- •§ 2. Сведения из гидростатики и гидродинамики
- •§ 3. Практическое использование законов гидростатики и гидродинамики
- •§ 4. Истечение жидкости через отверстия и насадки
- •Глава II
- •§ 5. Параметры состояния газа
- •§ 6. Идеальный и реальный газы
- •§ 7. Теплоемкость газов *
- •§ 8. Первый закон термодинамики
- •§ 9. Термодинамические процессы
- •§ 10. Второй закон термодинамики
- •§ 11. Свойства водяного пара
- •§12. Свойства влажного воздуха
- •§13. Истечение и дросселирование
- •§ 14. Основы теплопередачи
- •Глава III
- •§ 15. Основные сборочные единицы трубопроводов
- •§ 17. Ремонт и испытание трубопроводов и арматуры
- •§ 18. Правила безопасной эксплуатации трубопроводов и арматуры
- •§ 19. Составление и чтение схем трубопроводов
- •Глава IV
- •§ 20. Общие сведения
- •§ 21. Возвратно-поступательные насосы
- •§ 22. Основные сборочные единицы насоса
- •§ 24. Процессы всасывания и нагнетания
- •§ 25. Газовые колпаки
- •§ 26. Индикаторная диаграмма поршневого насоса
- •§ 28. Дозировочные и синхродозировочные электронасосные агрегаты
- •§ 27. Паровые прямодействующие насосы
- •§ 30. Примеры составления и чтения схем насосных установок
- •Глава V
- •§ 31. Общие сведения
- •§ 32. Схема установки центробежных насосов
- •§ 33. Основные параметры центробежного насоса
- •§ 34. Уравнение Эйлера для определения теоретического и действительного напоров центробежного насоса
- •§ 35. Характеристики центробежного насоса и трубопровода
- •§ 36. Совместная работа центробежных насосов
- •§ 37. Осевая сила и способы ее разгрузки
- •§ 38. Основные сборочные единицы центробежных насосов
- •§ 39. Горизонтальные одноколесные
- •§ 40. Центробежные консольные и погружные химические насосы
- •§ 41. Центробежные герметичные электронасосы. Насосы из неметаллических материалов
- •§ 42. Типовые схемы насосных установок
- •Глава VI
- •§ 43. Общие положения по эксплуатации насосов
- •§ 44. Регулирование работы и смазывание насосов
- •§ 45. Автоматическое управление насосными установками
- •§ 46. Эксплуатация поршневых насосов
- •§ 47. Эксплуатация центробежных насосов
- •Глава VII
- •§ 48. Общие сведения
- •§ 49. Теоретический и действительный циклы работы одноступенчатого компрессора поршня выполняют диафрагмы (мембраны), называются диафраг-мовыми.
- •§ 50. Основные параметры поршневых компрессоров
- •§ 51. Способы регулирования производительности поршневых компрессоров
- •§ 52. Назначение и устройство основных сборочных единиц поршневых компрессоров
- •§ 53. Смазочные системы поршневых компрессоров
- •§ 54. Системы охлаждения поршневых компрессоров
- •§ 55. Газовые коммуникации
- •§ 56. Угловые крейцкопфные компрессоры
- •§ 57. Горизонтальные компрессоры
- •§ 58. Вертикальные компрессоры
- •§ 59. Поршневые компрессоры без смазывания цилиндров. Компрессоры без кривошипно-шатунного механизма
- •§ 60. Роторные и винтовые компрессоры
- •Глава VIII
- •§ 61. Принцип действия и классификация
- •§ 62. Теоретические основы работы центробежных компрессоров
- •§ 63. Основные сборочные единицы центробежных компрессоров
- •§ 64. Смазочная система центробежных компрессоров
- •§ 65. Вентиляторы
- •§ 66. Центробежные воздухо- и газодувки
- •§ 67. Многоступенчатые центробежные компрессоры
- •§ 68. Центробежные
- •§ 69. Осевые компрессоры
- •§ 70. Холодильные компрессоры
- •§ 71. Вспомогательное оборудование компрессорных установок.
- •Глава X
- •§ 72. Основные правила эксплуатации и технического обслуживания
- •§ 73. Эксплуатация поршневых компрессоров
- •§ 74. Автоматическое управление поршневыми компрессорными установками.
- •§ 75. Возможные неисправности поршневых компрессоров
- •§ 76. Эксплуатация центробежных компрессоров
- •§ 77. Автоматическое управление центробежными компрессорными установками
- •§ 78. Возможные неисправности центробежных компрессоров
- •§ 79. Безопасные условия эксплуатации компрессорных установок
- •Глава XI
- •§ 80. Электродвигатели
- •§ 81. Двигатели внутреннего сгорания
- •§ 82. Паровые машины
- •§ 83. Паровые и газовые турбины
- •§ 84. Гидравлический привод
- •§ 85. Промежуточные звенья привода
- •§ 86. Газомоторные компрессоры и газотурбинные установки
- •Глава XII
- •§ 87. Назначение и виды ремонтов
- •§ 88. Способы определения неисправностей. Подготовка оборудования к ремонту
- •§ 89. Ремонт сальников
- •§ 90. Ремонт цилиндров, поршней и поршневых колец
- •§ 91. Ремонт деталей кривошипно-шатунного механизма
- •§ 92. Ремонт лабиринтных уплотнений и думмисов
- •§ 93. Ремонт маслонасосов и маслосистем
- •§ 94. Ремонт и обслуживание вспомогательного оборудования
- •§ 95. Пуск после ремонта и сдача насосов и компрессоров в эксплуатацию
- •§ 96. Виды смазки для насосов и компрессоров
- •§ 97. Прокладочные и набивные материалы
- •Глава XIII
- •§ 98. Технологический регламент и должностные инструкции
- •§ 99. Бригадная форма организации и стимулирования труда
§ 32. Схема установки центробежных насосов
Центробежные насосы используют для перекачивания жидкостей, находящихся в открытых (колодцах) и закрытых резервуарах, аппаратах, трубопроводах. При перекачивании жидкостей из открытых резервуаров насосы устанавливают либо выше уровня жидкости (рис. 44, а), либо ниже — под заливом (рис. 44, б).
В некоторых насосах на нижнем конце всасывающего трубопровода 8 монтируют сетку и приемный затвор (рис. 44, а). Сетка служит для задержания частиц, находящихся в перекачиваемой жидкости. Приемный обратный затвор удерживает жидкость в насосе и всасывающем трубопроводе при заливке насоса перед пуском или при его остановке. Обратные затворы устанавливают в насосах, располагаемых выше уровня перекачиваемой жидкости.
В насосах, перекачивающих жидкость из закрытого резервуара или трубопровода (рис. 44, в), давление на линии всасывания может быть выше или ниже атмосферного.
Для нормальной работы насос оснащен следующей арматурой и контрольно-измерительными приборами: задвижкой, или клапаном 1, па всасывающем трубопроводе; краном, устанавливаемом в верхней части корпуса насоса, для выпуска воздуха при заливке насоса; вакуумметром 2, который устанавливают на насосах, расположенных выше уровня жидкости, перекачиваемой из открытых резервуаров, или на насосах, перекачивающих жидкость из закрытых резервуаров с давлением ниже атмосферного (манометр устанавливают на насосах, всасывающих жидкость под напором); манометром 3, присоединенным к напорному патрубку и служащим для измерения напора насоса; обратным затвором 4, который не допускает движения жидкости из напорного коллектора 6 в насос
при параллельной работе нескольких насосов; задвижкой, или клапаном 5, на напорном трубопроводе 7, их используют при пуске и остановке насоса, а также для регулирования подачи и напора;
устройством для заливки насоса перед его пуском; расходомером для измерения расхода жидкости.
При автоматическом управлении работой насоса на линиях всасывания и нагнетания устанавливают задвижки с пневматическим или электрическим приводом и устройства для дистанционного управления пуском и остановкой двигателя насоса.
§ 33. Основные параметры центробежного насоса
Основными параметрами центробежного насоса служат подача; напор, мощность, КПД и частота вращения вала.
Подача насоса Q — это действительный объем жидкости, перекачиваемый в единицу времени. Массовая подача G представляет собой отношение массы подаваемой жидкости ко времени.
Для приближенной оценки максимальной подачи центробежного насоса пользуются формулой Q=KD2, где D — диаметр нагнетательного патрубка; К — коэффициент, который для насосов с нагнетательным патрубком менее 100 мм равен 13—16, а более 100 мм — 20—25.
В центробежных насосах встречаются объемные потери, которые обусловлены вытеканием жидкости через различные уплотнения. У современных крупных центробежных насосов объемный КПД
η0 = 0,96/0,98, а у небольших и средних насосов η0= 0,85/0,95.
Гидравлические потери в центробежных насосах обусловлены несовершенством изготовления проточной части и рабочих колес. Эти потери учитывают гидравлическим КПД. Для современных насосов
ηг=0,85/0,96. Небольшие насосы с плохой обработкой внутренних поверхностей имеют ηг =0,8/0,85.
Механические потери обусловлены трением в уплотнениях и подшипниках, а также трением жидкости о поверхности рабочих колес и других частей насоса. Механический КПД крупных насосов ηм=0,92/0,96.
Общий КПД различных насосов может быть η= 0,6/0,92, его определяют по формуле η= QρH/(102 N), где ρ — плотность жидкости, кг/м3; H— напор, м; N — мощность насоса, кВт; Q — подача, м3/с.
Напор насоса H — это прирост удельной энергии жидкости, подученной ею в насосе. Числовое значение напора зависит от конструкции колеса и его размеров, от частоты вращения вала и свойств жидкости.
Напор можно подсчитать по формуле H=p/(pg), где р — давление, Па; р —плотность жидкости, кг/м3; g — ускорение свободного падения, м/с2.
Полезную мощность насоса Na определяют по формуле Nn= =pgQH, где Q — подача насоса, м3/с; р — плотность жидкости, кг/м3; g — ускорение свободного падения, м/с2; H—напор насоса, м.
В центробежных насосах различают вакуумметрическую и геометрическую высоту всасывания. Вакуумметрическая высота всасывания любого насоса слагается из геометрической высоты всасывания Hг.в(см. рис. 44, а), потерь напора во всасывающем трубопроводе Нс.в , скоростного напора во всасывающем патрубке насоса v2/(2g) и может быть определена по формуле Hвак=Hг.в +
+ v2/(2g)+ Нс.в
Допустимая вакуумметрическая высота всасывания — это та высота, при которой обеспечивается работа насоса без изменения основных технических показателей. Допустимую вакуумметрическую высоту всасывания указывают при определенной температуре перекачиваемой жидкости, давлении на ее поверхность, подаче и частоте вращения вала насоса.
Полную высоту подъема (напор насосной установки) определяют по формуле H=Hг+Hс, где Hг=Hг.в+Hг.н — общая геометрическая высота подъема жидкости, которая складывается из гео-
Потери напора во всасывающем и напорном трубопроводах состоят из потерь напора на преодоление сопротивления трения о стенки труб и потерь на преодоление местных сопротивлений при прохождении жидкости через задвижки, клапаны и т. д.
Если центробежный насос установлен так, что вакуумметриче-ская высота всасывания больше, чем необходимо для данного насоса, если температура перекачиваемой жидкости высокая, а также негерметичен всасывающий трубопровод, увеличено сопротивление на линии всасывания, то может наступить явление, называемое кавитацией.
Кавитация — это разрушение лопаток и корпуса центробежного насоса под действием множества микроударов, возникающих при захлопывании пузырьков паров жидкости при попадании потока из области низкого давления (всасывание) в область высокого давления (нагнетание). Пузырьки паров образуются тогда, когда давление в потоке жидкости становится меньше давления паров жидкости при данной температуре.
Кавитация сопровождается характерным шумом при работе насоса, вибрацией, снижением КПД, напора и подачи.
При возникновении кавитации насос необходимо немедленно' выключить, найти и устранить причину кавитации.
Для предотвращения кавитации следует правильно устанавливать насос и обеспечивать нормальные условия его эксплуатации.