
- •Введение
- •Элементарные частицы атомы молекулы тела
- •Классификация медицинской электронной аппаратуры
- •Классификация медицинской электроники по функциональному назначению.
- •II. Классификация медицинской аппаратуры по принципу действия.
- •Действие электрического тока на организм.
- •От вида тока и частоты.
- •Обеспечение электробезопасности при работе с медицинской аппаратурой.
- •Классификация медицинской аппаратуры по способу дополнительной защиты от поражающего действия электрического тока.
- •Надежность медицинской аппаратуры
- •Механические колебания
- •Незатухающие колебания
- •Энергия колеблющейся точки
- •Затухающие колебания
- •Вынужденные колебания
- •Автоколебания
- •Сложение колебаний
- •I.Однонаправленные колебания.
- •2. Взаимноперпендикулярные колебания.
- •Сложное колебание. Гармонический спектр сложного колебания.
- •Механические волны.
- •Уравнение плоской механической волны.
- •Энергия волны. Поток энергии волны. Вектор Умова.
- •Эффект Доплера.
- •Акустика. Природа звука.
- •Физические характеристики звука.
- •Характеристики слухового ощущения (Физиологические характеристики).
- •Шкала уровней громкости.
- •Звуковые методы исследования в клинике.
- •Гидродинамика
- •Свойства жидкостей
- •Основные понятия гидродинамики
- •Уравнение неразрывности струи
- •Уравнение Бернулли
- •Практические следствия из уравнения Бернулли.
- •Определение гидростатического давления
- •Правило Бернулли
- •4.Всасывающее действие струи – водоструйный насос.
- •Вязкость жидкости.
- •Ламинарное и турбулентное течение
- •Течение реальной жидкости по горизонтальной трубе постоянного сечения. Закон Гагена-Пуазейля.
- •Течение жидкости по горизонтальной трубе переменного сечения
- •Течение жидкости по разветвленной трубе
- •Течение жидкости по эластичной трубе
- •Биореология.
- •О т градиента скорости (скорости сдвига)
- •2) От гематокритного показателя (гематокрита) ,
- •3) От температуры
- •От диаметра сосуда, по которому течет кровь
- •Физические модели кровообращения.
- •Гидродинамическая
- •Электрическая модель.
- •Закономерности выброса и распространения крови в большом круге кровообращения.
- •Работа и мощность сердца.
- •Биологические мембраны
- •2.Физические свойства мембран.
- •Методы исследования мембран
- •4. Рентгеноструктурный анализ.
- •Диффузия в жидкостях. Закон Фика
- •Транспорт веществ через мембрану.
- •Пассивный транспорт веществ.
- •Перенос незаряженных частиц (атомов и молекул) через мембрану
- •Перенос заряженных частиц (ионов) через мембрану
- •Облегченная диффузия.
- •Активный транспорт.
- •Потенциал действия.
- •Распространение потенциала действия. (проведение возбуждения по нервным волокнам).
- •Электромагнитные явления в биологических системах Природа биопотенциалов и способы их описания
- •Равенство Доннана.
- •Потенциал покоя
- •Потенциал действия.
- •Распространение потенциала действия. (проведение возбуждения по нервным волокнам).
- •Биофизические принципы исследования Электрических полей в организме.
- •Электрический диполь
- •Напряженность электрического поля диполя.
- •Потенциал. Разность потенциалов.
- •Диполь в электрическом поле.
- •Токовый диполь. Эквивалентный электрический генератор.
- •Электрокардиография
- •Метод отведений Эйнтховена
- •Вектор-электрокардиография.
- •Незатухающие электромагнитные колебания.
- •Затухающие колебания
- •Вынужденные колебания.
- •Импульсные токи
- •Апериодический разряд конденсатора
- •Характеристики импульсных токов.
- •Генераторы импульсных токов.
- •Генератор на неоновой лампе
- •Блокинг-генератор
- •3. Мультивибратор
- •Изменение формы импульса.
- •Дифференцирующая цепь
- •Действие импульсного тока на ткани организма
- •Биологические основы реографии
- •Цпт, содержащая последовательно включенные активное, индуктивное и ёмкостное сопротивления
- •Цпт, содержащая параллельно включенные активное, индуктивное и ёмкостное сопротивления
- •Органы и ткани как элементы цптю
- •Электромагнитное поле. Электромагнитные волны Основные положения электромагнитной теории Максвелла.
- •Энергия электромагнитной волны
- •Физические процессы, происходящие в тканях организма под действием токов и электромагнитного поля
- •3. Переменное магнитное поле.
- •Поляризация света Природа света. Основные характеристики света
- •Поляризация света
- •Методы получения полностью поляризованного света
- •При отражении от неметаллического зеркала
- •При двойном лучепреломлении
- •3. Дихроизм.
- •Система поляризатор – анализатор
- •Вращение плоскости поляризации. Поляриметрия
- •Поляризационный микроскоп
- •Тепловое излучение. Природа теплового излучения. Характеристики теплового излучения
- •Закон Кирхгофа
- •Законы излучения абсолютно черного тела
- •Формула Планка и её применение для уточнения законов теплового излучения абсолютно черного тела
- •Источники теплового излучения, применяемые для лечебных целей
- •Электронная оптика Волновые свойства частиц. Длина волны де Бройля
- •Электронный микроскоп
- •Люминесценция
- •Фотолюминесценция
- •Закон Стокса
- •Количественные оценки люминесценции
- •Применение люминесценции в медицине
- •Индуцированное излучение. Лазеры – оптические квантовые генераторы
- •Свойства лазерного излучения
- •Применение лазеров в медицине
- •Голография и возможности её применения в медицине
- •Рентгеновское излучение
- •Свойства рентгеновского излучения
- •Механизмы генерации рентгеновского излучения
- •Рентгеновская трубка
- •Зависимость энергии рентгеновского излучения от рабочих параметров рентгеновской трубки.
- •Действие рентгеновского излучения на вещество
- •Некогерентное рассеяние (эффект Комптона).
- •Применение рентгеновского излучения в медицине
- •Ионизирующее излучение
- •Строение атомного ядра
- •Энергия связи
- •Радиоактивность. Виды излучений
- •Основной закон радиоактивного распада
- •Радиоактивность в природе – естественная фоновая радиация
- •Дозиметрия ионизирующего излучения Проникающая и ионизирующая способности радиоактивного излучения
- •Биофизические основы действия ионизирующего излучения на организм
- •Характеристики ионизирующего излучения
- •Дозиметрическая аппаратура
- •Защита от ионизирующего излучения
- •Электронный парамгнитный резонанс
- •Ядерный магнитный резонанс
Электронный парамгнитный резонанс
Если атом находится
в постоянном магнитном поле, то переходы
между подуровнями одного и того же
уровня маловероятны. Но если на атом
подействовать внешним переменным
магнитным полем таким, что частота этого
поля
совпадет с частотой фотона, энергия
которого равна
,
переходы становятся возможными. При
этом происходит поглощение или излучение
энергии электромагнитного поля, которое
называют электронным парамагнитным
резонансом (ЭПР).
Если переходы
осуществляются между подуровнями двух
уровней, то испускается энергия
.
При прохождении электромагнитной волны
через образец такая же энергия поглощается:
ЭПР наблюдается
в основном в кристаллических и жидких
парамагнетиках, т.к. у диамагнетиков
Форма и интенсивность спектральных линий определяются взаимодействием магнитных моментов электронов, в частности спиновых, с решеткой твердого тела и от других взаимодействий.
Взаимодействие с решеткой вещества приводит к уширению линии. Таким обоазом вместо бесконечно узкой линии поглощения наблюдается линия конечной ширины.
Различные виды взаимодействий между частицами вещества также приводят к увеличению ширины линии поглощения и на форму линии, что позволяет изучать виды взаимодействия частиц вещества по спектру ЭПР.
Поглощенная при ЭПР энергия, т.е интегральная (суммарная) интенсивность линии, при определённых условиях пропорциональна числу парамагнитных частиц, что позволяет по измереноой интенсивности судить о концентрации этих частиц.
В медико-биологических исследованиях с помощью метода ЭПР обнаруживают и исследуют свободные радикалы. По спектрам ЭПР объяснили механизм образоывания свободных радикалов при радиационном поражении; изучают канцерогенную активность некоторых веществ; изучают фотосинтез.
Для изучения биологических молекул используют метод спин-меток, при котором в различные части молекул исследуемого вещества вводится спин-метка – парамагнитная молекула с хорошо изученной структурой, которая образует ковалентную связь с исследуемым веществом. По изменению спектра спин-метки можно установитьрасположение различных групп атомов, их взаимодействия, изучать природу и ориентацию химических связей, обнаруживать молекулярное движение.
Используются также и спиновые зонды – парамагнитные частицы, которые нековалентно связаны с молекулами.
Частоты спектра ЭПР лежат в радиоволновом диапазоне. Приборы, на которых производятся ЭПР – исследрвания называются ЭПР-спетрометрами или радиометрами. Блок - схема их следующая:
Ядерный магнитный резонанс
Избирательное поглощение электромагнитных волн определенной частоты веществом в постоянном мегнитном поле, обусловленное перелриентацией магнитных моментов ядер, назыывают ядерным магнитным резонансом (ЯМР).
Магнитный момент
ядер суммируется из магнитных моментов
нуклонов. Обычно этот момент выражают
в магнетонах
:
Магнитный момент протона приближенно
равен
,
а нейтрона
.
Знак “-”
означает, что магнитный момент нейтрона
или ядра ориентирован противоположно
спину.
Магнитный момент ядра, помещенного в постоянное магнитное поле, может принимать только дискретную ориентацию. Это значит, что энергетический уровень ядра, также как энаргетический уровнь атома, в постоянном магнитном поле расщепляется на подуровни.
Если в этих условиях на ядро воздействовать переменным электромагнитным полем, то между подуровнями станут возможными переходы. Чтобы осуществить эти переходы, а также поглощение энергии электромагнитного поля ядром, необходимо, чтобы частота электромагнитного поля, совпадала с частотой перехода между подуровнями, т.е.
.
Эти условия выполняются только для свободных ядер. Экспериментальные значения резонансных частот не совпадают с частотами, определяемые этой формулой. Это обусловлено химическим сдвигом, который возникает из-за того, что в атомах и молекулах под действием постоянного магнитного поля возникают электронные токи, создавая локальное магнитное поле. Поэтому постоянное магнитное поле следует характеризовть эффективным значением напряженности
,
где
постоянная экранирования, зависящая
от электронного окружения ядер. Это
означает, что для данного типа ядра
резонанс наблюдается при разных частотах,
что и определяет химический сдвиг. Он
зависит от электронного строения
молекул, от химической связи, концентрации
данного вещества, темрературы, типа
растворителя и т.д.
По химическому сдвигу, числу линий в спектре, по положению линий можно установить структуру молекулы.
В настоящее время разработан метод ЯМР - интроскопии, в котором без разрушения послойно исследовать кости, сосуды, нормальные ткани и ткани со злокачественной патологией, что является эффективным методом диагностики заболеваний, которые связаны с изменением состояния органа и ткани.