Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции_Бухт.doc
Скачиваний:
54
Добавлен:
06.09.2019
Размер:
6.28 Mб
Скачать

Равенство Доннана.

При выводе уравнений, описывающих распределение ионов между клеткой и окружающей средой, выполняется условие электронейтральности, равенство суммарной концентрации анионов ( в основном и ионов макромолекул ) катионов

как внутри клетки

,

так и снаружи клетки

.

Здесь - число отрицательных зарядов на каждой белковой молекуле.

В межклеточной жидкости содержание катионов значительно выше, чем ионов макромолекул . Поэтому

- равенство Доннана

Потенциал покоя

Экспериментально установлено, что цитоплазма в состоянии покоя имеет отрицательный потенциал, а окружающая среда- положительный.

Действительно, в первом приближении

В клетке в 20-40 раз.

Снаружи в 10 раз.

Это неравномерное распределение концентраций обусловлено насосом, при котором при переносе переносится . Кроме того, в клетке имеются анионы макромолекул (белков, аминокислот, и др.).

Ионы внутри клетки не связаны с другими ионами и могут диффундировать туда, где их мало, т.е. в окружающую среду. Т.е. в состоянии покоя клетка проницаема только для ионов . Анионы не могут проникать через мембрану и остаются на внутренней поверхности мембраны. Т.о. мембрана снаружи зарядится положительно, а внутри – отрицательно.

Между внутренней и внешней поверхностями мембраны возникает разность потенциалов мембранной природы. Эта разность потенциалов между клеткой и окружающей средой, измеренная в состоянии физиологического покоя, называется потенциалом покоя.

Если принять, в первом приближении, что потенциал покоя определяется только диффузией ионов , то величина потенциала покоя определяется как

уравнение Нернста.

- активная концентрация ионов внутри клетки,

- активная концентрация ионов снаружи.

Если = , то клетка мертва.

Но , поэтому . Например, для аксона гигантского кальмара

, а это подтверждает, что в основе возникновения потенциала действия лежит перенос ионов.

В реальности в состоянии покоя мембрана проницаема не только для ионов , но и для ионов и . Например, для аксона гигантского кальмара экспериментально установлено, что . Основной вклад в потенциал покоя вносят ионы и . Ионов переносится очень мало. Поэтому на внешней поверхности

сосредоточивается положительный заряд, а на внутренней – отрицательный. Потенциал покоя определяется тремя диффузионными потоками и вычисляется (с учетом равенства Доннана) по формуле

.

Кроме простой диффузии ионов и может идти обменная диффузия, но, как мы отмечали, потоки их равны и обменная диффузия не влияет на мембранный потенциал.

Потенциал действия.

Все клетки возбудимых тканей (нервная, мышечная, железистая) под действием различных раздражителей достаточной силы способны переходить в возбужденное состояние. Обязательным признаком возбуждения является изменение электрического состояния мембраны.

Опыт показывает, что возбужденный участок становится

электроотрицательным по отношению к

невозбужденному участку. Следовательно, на возбужденном участке происходит перераспределение ионов. При возбуждении это перераспределение кратковременно и концентрации восстанавливаются после снятия возбуждения, а разность потенциалов становится равной исходной, т.е. потенциалу покоя. Для аксона кальмара обнаружена такая зависимость изменения потенциала при возбуждении от времени

- потенциал покоя; мембранный потенциал при возбуждении;

- общее изменение разности потенциалов.

Общее изменение разности потенциалов между клеткой и окружающей средой, происходящее при пороговом и сверхпороговом возбуждении клетки, называется потенциалом действия.

Механизм возникновения потенциала действия. В 1938 году Круэл и Картис показали, что сопротивление аксона кальмара в состоянии покоя 1000 Ом/см2, а при возбуждении 25 Ом/см2, т.е. уменьшается в 40 раз. При этом сопротивление цитоплазмы не изменяется. Следовательно, уменьшение сопротивления мембраны обусловлено только её проницаемости для ионов, т.к. именно они являются переносчиками электричества в мембранах и клетках.

Хаджкин, Хаксли и Катц показали, что при возбуждении проницаемость мембраны увеличивается только для ионов , причем в 500 раз. Это приводит к увеличению диффузии ионов из окружающей среды в клетку (по концентрационному градиенту), что приводит к изменению потенциала мембраны. В первые моменты возбуждения интенсивность потока ионов

из клетки остается такой же, как и до возбуждения. Поэтому поток ионов вызывает исчезновение избыточного отрицательного потенциала на внутренней поверхности мембраны. Эта фаза называется деполяризацией и длится короткое время. Затем начинается другая фаза – реполяризация., заключающаяся в следующем. Диффузия ионов внутрь клетки нарушает равновесие концентраций в клетке. В связи с этим повышается проницаемость мембраны для ионов , начинается диффузия ионов из клетки в окру-жающую среду. Поток ионов из клетки приводит к уменьшению проницаемости для ионов . В результате происходит реполяризация мембраны и восстановление потенциала покоя. Проницаемость мембраны для ионов и падает до исходной величины. Фаза реполяризации длится дольше фазы деполяризации, поэтому и кривая более пологая.

В некоторых случаях регистрируется так называемый следовой потенциал, как на данном рисунке. Он вызван тем, что после окончания возбуждения проницаемость мембраны для ионов и остпется повышенной.

Т.о. формирование потенциала действия обусловлено двумя потоками через мембрану: поток внутрь клетки приводит к перезарядке мембраны, а противоположный поток обусловливает восстановление потенциала. Потоки эти приблизительно равны по величине, но сдвинуты по времени. Благодаря этому сдвигу во времени и возможно появление потенциала действия.