Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции_Бухт.doc
Скачиваний:
54
Добавлен:
06.09.2019
Размер:
6.28 Mб
Скачать
  1. Электрическая модель.

На основе рассмотренной гидродинамической механической модели можно построить электрическую модель кровообращения.Построена электрическая модель, исходя из следующих соображений. Жидкость течет, ток тоже течет. Перепад давлений вызывает ток жидкости, а разность потенциалов вызывает электрический ток.

На рисунке: - источник переменного несинусоидального переменного напряжения, который служит аналогом сердца. Выпрямитель (диод) , пропускающий ток только в одном направлении, служит аналогом клапана. Конденсатор

Рис. 5.8

служит аналогом упругого резервуа

ра (аорты и артерий). Действительно. Коденсатор служит для накопления заряда. В первые полпериода накапливает заряд, а во вторые полпериода разражается через сопротивление . Участки упругих резервуаров (аорта, артерии), обладающие элласичностью, можно рассматривать как емкость для крови. Вязкостное сопротивление, большее у переферичесих сосудов, можно представить в виде резистора .

Электрическая модель широко применяется в теоретической медицине, т.к. распределение импульсов электрического потенциала и тока в электрических цепях хорошо изучены и легко описываются математически.

Закономерности выброса и распространения крови в большом круге кровообращения.

Для рассмотрения этого вопроса вернемся к гидродинамической модели кровообращения.

Начальное давление, необходимое для продвижения крови по всей сосудистой системе, создается работой сердца.

При каждом сокращении левого желудочка сердца в аорту, уже заполненную кровью под соответствующим давлением, выталкиваться некоторый объем крови, называемый ударным объёмом ( 65 – 70 мл). Затем сердечный клапан закрывается.

Поступивший в аорту дополнительный объём крови повышает в ней давление и растягивает её стенки:

Таким образом, кровь по аорте распространяется как волна. Эта волна повышенного давления, называемого систолическим, вызывает колебания сосудистых стенок. Колебания далее распространяются вдоль крупных артерий в виде упругой волны. Эта волна повышенного давления, вызванная выбросом крови из левого желудочка во время систолы, называется пульсовой волной. Скорость пульсовой волны 5 – 10 м/c.

В период расслабления сердечной мышцы (диастолы) стенки аорты постепенно сокращаются до исходного состояния и проталкивают поступивший объём крови в более крупные артерии. В них, в свою очередь, стенки растягиваются и проталкивают кровь в последующие звенья системы.

Т.к. скорость крови 5 – 10 м/c, то за время систолы ( 0,3 с) она должна распространиться на расстояние 1,5 – 3 метра, что больше, чем расстояние от сердца до конечностей. Это означает, что пульсовая волна достигает конечностей раньше, чем начинается спад давления в аорте, т.е. прежде, чем начнется диастола. В результате распространения пульсовой волны кровь течет непрерывно.

Если графически представить пульсовую волну как гармоническую, то в аорте эта волна имеет график вид как на рис.

5.9 а, а в артериолах - как на рис. 5.9 б.

Рис. 5.9 а

Рис. 5.9 б

Амплитуда колебаний в аотре больше, чем в артериолах. Вязкость крови и упруго-вязкие свойства стенок сосудов уменьшают амплитуду колебаний пульсовой волны.

Течение крови в сосудистой системе в нормальных условиях носит ламинарный характер. Турбулентным оно может стать при резком сужении просвета.

Количество крови, протекающее через поперечное сечение участка сосудистой системы в 1 секунду, называется объёмной скоростью кровотока и может быть рассчитана по закону Гагена-Пуазейля

.

Но расчет этот приближенный, т.к. зависит не только от и , но и от потерь энергии при деформации эллчстичных стенок сосудов, от завихрений в местах разветвлений.

Сопротивление току крови и падение давления на разных участках сосудистой системы различны (рис.5.10)

Рис. 5.10

Оно зависит от общего сечения (общего просвета) и от числа сосудов в разветвлении. Наибольшее падение происходит в артериолах (до 50 -ти % от начального). Это связано с тем, что число артериол в сотни раз больше, чем крупных артерий при сравнительно небольшом увеличении общего просвета сосудов. Поэтому потери давления от пристеночного трения достаточно большие. Общее число капилляров ещё больше, поэтому даже при небольшой их длине их падение давления в них значительно, но меньше, чем в артериолах.

В венах падение давления незначительно. Это связано с тем, что площадь сечения венозных сосудов в среднем в 2 раза больше, чем в артериях. Имеется участок, в котором давление оказывается ниже атмосферного. Этот участок соответствует движению крови под влиянием присасывающего действия грудной клетки при вдохе.

На рисунке представлен также график изменения скорости крови при прохождении её по разным сосудам. Как видим из рисунка в артериях скорость крови постоянна. В артериолах она падает и в капиллярах становится равной нулю. В венах скорость крови повышается.