Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции_Бухт.doc
Скачиваний:
54
Добавлен:
06.09.2019
Размер:
6.28 Mб
Скачать

Физические характеристики звука.

К физическим (объективным) характеристикам звука следует отнести: частоту (период, длина волны), амплитуду, акус-тический (гармонический) спектр, скорость распространения, интенсивность, звуковое давление, удельное акустическое сопротивление.

Скорость звука в каждой конкретной среде при данных условиях является постоянной, но в разных средах она различна и определяется свойствами среды: составом, температурой, плот-ностью, теплоемкостью. В воздухе скорость звука может быть определена из формулы Лапласа для идеального газа

где - отношение теплоёмкостей при постоянном давлении и объёме, – универсальная газовая постоянная, μ – молярная масса газа.

Акустический (гармонический) спектр характеризует сложный тон. Сложный тон можно разложить на простые тоны с помощью теоремы Фурье.

Рис.3.1

Наименьшая частота 0 такого разложения соответствует основному тону, остальные гармоники называются обертонами и имеют частоты кратные частоте : Набор частот с указанием их относительной интенсивности и называют акустическим спектром.

Интенсивность звука - плотность потока энергии звуковой волны, т.е. средняя энергия, переносимая волной за 1 секунду через единичную площадку, перпендикулярную направлению распространения волны.

Звуковое (акустическое) давление . Звуковая волна в газах и жидкостях представляет собой распространяющуюся пространстве последовательность чередующихся областей сжатия и разрежения в среде. Если в отсутствии звуковых волн среднее давление в газе было равно Р, то при

п рохождении волн через среду общее давление будет определяться как

Рис. 3.2

Величина Р называется звуковым давлением. Это давление, добавочное к среднему давлению, периодически изменяющееся, образующееся в участках сгущения и разряжения частиц в звуковой волне.

Между звуковым давлением и интенсивностью звуковой волны существует связь, определяемая формулами:

или ,

где - амплитудное, а - эффективное значение давления, которое учитывается на практике ( ). Произведение скорости звука в данной среде на плотность среды , , называется акустическим сопротивлением среды (обозначается ) и является основной характеристикой ее акустических свойств. При нормальных условиях для воздуха , для воды , для железа .

Характеристики слухового ощущения (Физиологические характеристики).

Поскольку звук является объектом слуховых ощущений, то характеристики, которые мы будем обсуждать, являются субъективными характеристиками. К характеристикам слухового ощущения относятся высота, тембр и громкость.

Высота звука – это оценка ухом частоты колебаний. Чем больше частота колебаний, тем более высоким воспринимается звук.

Высота звука в значительно меньшей степени зависит от его интенсивности: звук большей интенсивности воспринимается ухом как более низкий тон.

Для оценки высоты звука весь диапазон тонов делится на октавы. Октава – это интервал высот тона, в котором отношение крайних частот равно двум:

Октава

1

2

3

4

5

6

7

8

9

10

Преде-лы час-тот, Гц

16

32

32

64

64

128

128

256

256

512

512

1024

1024

2048

2048

4096

4096

8192

8192

16384

Тембр. Сложные тоны одинаковой основной частоты могут отличаться по форме и соответственно по гармоническому спектру. Это различие воспринимается ухом как тембр звука. Иначе можно сказать, что тембр – это окраска звука. Например, одна и та же нота, звучащая на кларнете и рояле воспринимается ухом по разному:

Рис. 3.3

Таким образом, тембр характеризует звуки одинаковой основной частоты, но зависит от формы и гармонического спектра звука.

Громкость звука характеризует уровень слухового ощущения над порогом слышимости (определение порога слышимости дадим позже).

Громкость звука зависит, прежде всего, от его интенсивности.

Эта зависимость сложная, т.к. соотношение между громкостью и интенсивностью обусловлено чувствительностью уха, которая, в свою очередь, сама зависит от частоты и интенсивности.

Рис. 3.4

Даже при одинаковой интенсивности звука чувствительность уха неодинакова к колебаниям различных частот: она повышается при изменении частот от 16 до 1000 Гц, затем до 3000 Гц остается постоянной, затем до 5000Гц незначительно понижается, затем постепенно понижается вплоть до 20 000 Гц. Звуки частотой ниже 16 Гц и выше 20 000 Гц ухо не воспринимает (рис. 3.4, оценочный график).

Зависимость громкости от интенсивности связана с адаптацией к силе раздражения. Вследствие адаптации чувствительность уха при повышении интенсивности понижается, и, наоборот, при уменьшении интенсивности чувствительность увеличивается. Поэтому ухо воспринимает звуки в достаточно широком интервале интенсивностей, но между громкостью и интенсивностью нет прямой зависимости даже на одной и той же частоте.

Чувствительность уха к звукам различной интенсивности характеризуется порогом слышимости и порогом болевого ощущения (порогом боли). Порогом слышимости, , называется наименьшая интенсивность звука, при которой возникает едва различимое слуховое ощущение. Вт/м2 на частоте 1000 Гц. Порог слухового ощущения на той же частоте можно выразить через звуковое давление Па.

Порогом болевого ощущения (порогом боли), , называется наименьшая интенсивность звука, при которой в ухе возникают болевые ощущения. Вт/м2 на частоте 1000 Гц.

Звуковое давление на пороге боли на той же частоте Па, а других частотах предельные интенсивно-

Рис. 3.5

сти, воспринимаемые ухом, имеют другие значения (рис. 3.5).

Закон Вебера-Фехнера.

Для того чтобы найти математическое соотношение между громкостью и интенсивностью звука, следует обратить внимание на психофизический закон Вебера – Фехнера: если увеличивать раздражение в геометрической прогрессии (т.е. в одинаковое число раз), то ощущение этого раздражения возрастает в арифметической прогрессии (т.е. на одинаковую величину).

Если применить этот закон к звуку, то если интенсивность звук принимает ряд последовательных значений: , , , и т.д. ( ), соответствующие им ощущения громкости звука будут иметь значения и т.д.

Опытным путем установлено, что вследствие адаптации наименьшее ощутимое изменение громкости , которое возникает при изменении интенсивности на величину , зависит от исходной интенсивности так, что отношение остается постоянным во всем диапазоне частот.

В дифференциальной форме это положение запишется как

,

где – коэффициент пропорциональности, зависящий от частоты и интенсивности.

Если проинтегрировать последнюю формулу в пределах от порога слышимости до заданного уровня , получим формулу, выражающую связь между громкостью и интенсивностью:

Е = .

Это выражение называется законом Вебера-Фехнера.

Звуковые измерения. Шкала уровней интенсивности.