
- •Введение
- •Элементарные частицы атомы молекулы тела
- •Классификация медицинской электронной аппаратуры
- •Классификация медицинской электроники по функциональному назначению.
- •II. Классификация медицинской аппаратуры по принципу действия.
- •Действие электрического тока на организм.
- •От вида тока и частоты.
- •Обеспечение электробезопасности при работе с медицинской аппаратурой.
- •Классификация медицинской аппаратуры по способу дополнительной защиты от поражающего действия электрического тока.
- •Надежность медицинской аппаратуры
- •Механические колебания
- •Незатухающие колебания
- •Энергия колеблющейся точки
- •Затухающие колебания
- •Вынужденные колебания
- •Автоколебания
- •Сложение колебаний
- •I.Однонаправленные колебания.
- •2. Взаимноперпендикулярные колебания.
- •Сложное колебание. Гармонический спектр сложного колебания.
- •Механические волны.
- •Уравнение плоской механической волны.
- •Энергия волны. Поток энергии волны. Вектор Умова.
- •Эффект Доплера.
- •Акустика. Природа звука.
- •Физические характеристики звука.
- •Характеристики слухового ощущения (Физиологические характеристики).
- •Шкала уровней громкости.
- •Звуковые методы исследования в клинике.
- •Гидродинамика
- •Свойства жидкостей
- •Основные понятия гидродинамики
- •Уравнение неразрывности струи
- •Уравнение Бернулли
- •Практические следствия из уравнения Бернулли.
- •Определение гидростатического давления
- •Правило Бернулли
- •4.Всасывающее действие струи – водоструйный насос.
- •Вязкость жидкости.
- •Ламинарное и турбулентное течение
- •Течение реальной жидкости по горизонтальной трубе постоянного сечения. Закон Гагена-Пуазейля.
- •Течение жидкости по горизонтальной трубе переменного сечения
- •Течение жидкости по разветвленной трубе
- •Течение жидкости по эластичной трубе
- •Биореология.
- •О т градиента скорости (скорости сдвига)
- •2) От гематокритного показателя (гематокрита) ,
- •3) От температуры
- •От диаметра сосуда, по которому течет кровь
- •Физические модели кровообращения.
- •Гидродинамическая
- •Электрическая модель.
- •Закономерности выброса и распространения крови в большом круге кровообращения.
- •Работа и мощность сердца.
- •Биологические мембраны
- •2.Физические свойства мембран.
- •Методы исследования мембран
- •4. Рентгеноструктурный анализ.
- •Диффузия в жидкостях. Закон Фика
- •Транспорт веществ через мембрану.
- •Пассивный транспорт веществ.
- •Перенос незаряженных частиц (атомов и молекул) через мембрану
- •Перенос заряженных частиц (ионов) через мембрану
- •Облегченная диффузия.
- •Активный транспорт.
- •Потенциал действия.
- •Распространение потенциала действия. (проведение возбуждения по нервным волокнам).
- •Электромагнитные явления в биологических системах Природа биопотенциалов и способы их описания
- •Равенство Доннана.
- •Потенциал покоя
- •Потенциал действия.
- •Распространение потенциала действия. (проведение возбуждения по нервным волокнам).
- •Биофизические принципы исследования Электрических полей в организме.
- •Электрический диполь
- •Напряженность электрического поля диполя.
- •Потенциал. Разность потенциалов.
- •Диполь в электрическом поле.
- •Токовый диполь. Эквивалентный электрический генератор.
- •Электрокардиография
- •Метод отведений Эйнтховена
- •Вектор-электрокардиография.
- •Незатухающие электромагнитные колебания.
- •Затухающие колебания
- •Вынужденные колебания.
- •Импульсные токи
- •Апериодический разряд конденсатора
- •Характеристики импульсных токов.
- •Генераторы импульсных токов.
- •Генератор на неоновой лампе
- •Блокинг-генератор
- •3. Мультивибратор
- •Изменение формы импульса.
- •Дифференцирующая цепь
- •Действие импульсного тока на ткани организма
- •Биологические основы реографии
- •Цпт, содержащая последовательно включенные активное, индуктивное и ёмкостное сопротивления
- •Цпт, содержащая параллельно включенные активное, индуктивное и ёмкостное сопротивления
- •Органы и ткани как элементы цптю
- •Электромагнитное поле. Электромагнитные волны Основные положения электромагнитной теории Максвелла.
- •Энергия электромагнитной волны
- •Физические процессы, происходящие в тканях организма под действием токов и электромагнитного поля
- •3. Переменное магнитное поле.
- •Поляризация света Природа света. Основные характеристики света
- •Поляризация света
- •Методы получения полностью поляризованного света
- •При отражении от неметаллического зеркала
- •При двойном лучепреломлении
- •3. Дихроизм.
- •Система поляризатор – анализатор
- •Вращение плоскости поляризации. Поляриметрия
- •Поляризационный микроскоп
- •Тепловое излучение. Природа теплового излучения. Характеристики теплового излучения
- •Закон Кирхгофа
- •Законы излучения абсолютно черного тела
- •Формула Планка и её применение для уточнения законов теплового излучения абсолютно черного тела
- •Источники теплового излучения, применяемые для лечебных целей
- •Электронная оптика Волновые свойства частиц. Длина волны де Бройля
- •Электронный микроскоп
- •Люминесценция
- •Фотолюминесценция
- •Закон Стокса
- •Количественные оценки люминесценции
- •Применение люминесценции в медицине
- •Индуцированное излучение. Лазеры – оптические квантовые генераторы
- •Свойства лазерного излучения
- •Применение лазеров в медицине
- •Голография и возможности её применения в медицине
- •Рентгеновское излучение
- •Свойства рентгеновского излучения
- •Механизмы генерации рентгеновского излучения
- •Рентгеновская трубка
- •Зависимость энергии рентгеновского излучения от рабочих параметров рентгеновской трубки.
- •Действие рентгеновского излучения на вещество
- •Некогерентное рассеяние (эффект Комптона).
- •Применение рентгеновского излучения в медицине
- •Ионизирующее излучение
- •Строение атомного ядра
- •Энергия связи
- •Радиоактивность. Виды излучений
- •Основной закон радиоактивного распада
- •Радиоактивность в природе – естественная фоновая радиация
- •Дозиметрия ионизирующего излучения Проникающая и ионизирующая способности радиоактивного излучения
- •Биофизические основы действия ионизирующего излучения на организм
- •Характеристики ионизирующего излучения
- •Дозиметрическая аппаратура
- •Защита от ионизирующего излучения
- •Электронный парамгнитный резонанс
- •Ядерный магнитный резонанс
Основной закон радиоактивного распада
Радиоактивный распад – статистическое явление. Нельзя заранее предсказать, когда распадется нестабильное ядро, можно только для большой совокупности ядер вывести некоторый статистический закон, который выражает зависимость числа нераспавшихся ядер от времени. Сделаем это.
Пусть за время
распадается
ядер. Это число ядер прямо пропорционально
общему числу радиоактивных ядер
и времени
,
где
постоянная распада (
пропорциональна вероятности распада
ядра и для каждого вида ядер является
индивидуальной величиной). “-“
означает убыль числа нераспавшихся
ядер со временем.
Решим это
дифференциальное уравнение, отметив,
что при
при
числу нераспавшихся в данный момент
ядер.
откуда
Это уравнение является основным законом радиоактивного распада и показывает, что число нераспавшихся ядер убывает
со временем по экспоненциальному закону.
Число распавшихся ядер определяется как
.
Скорость распада
чаще всего характеризуется величиной
периода полураспада
.
Это время, в течение которого распадается
половина начального числа ядер (рис.1).
Период полураспада является относительной
скоростью распада. Период полураспада
связан с постоянной распада
.Связь
устанавливается достаточно просто.
При
число нераспавшихся ядер
.
Следовательно,
закон радиоактивного разряда для этого времени запишется как
откуда
или
следовательно,
Период полураспада
элементов и их изотопов различается в
широких пределах от миллионов лет
до долей секунды
.
При практическом использовании источников радиоактивного излучения основное значение имеет общее число распадов, происходящих в источнике в единицу времени. Эта величина называется активностью данного источника. Она характеризует абсолютную скорость
Со временем активность данного элемента уменьшается в соответствии с основным законом распада
.
Внесистемная единица измерения активности
-
соответствует
Аппаратура, регистрирующая ионизирующее излучение – камера Вильсона, пузырьковая камера, счетчик Гейгера, фотопластинки Вы изучите на практических занятиях.
Радиоактивность в природе – естественная фоновая радиация
Радиоактивные элементы значительно распространены в природе, хотя и в ничтожно малых количествах.
В земной коре: в
урановых рудах содержаться долгоживущие
элементы (уран, радий, торий и др.). У
урана
у тория
Содержание их в рудах не превышает
десятитысячных долей процента. В
Кузбасских углях имеются изотопы
уранового ряда.
В почве имеются
радиоактивные изотопы
(в
количестве до небольших долей процента),
которые образуются в атмосфере и из неё
поступают в почву. В меньших количествах
в
почве имеются
изотопы рубидия
и др.
В природных водах имеются радиоактивные элементы, вымываемые из почвы и горных пород, а в некоторых минеральных источниках имеются и растворенные изотопы радон и тория.
В атмосфере имеются изотопы а в некоторых районах и радон.
В процессе эволюции животные и растения приспособились к этому радиоактивному фону, который обусловливает их нормальную жизнедеятельность.