Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций часть 2 бакалавры.doc
Скачиваний:
55
Добавлен:
17.08.2019
Размер:
6.51 Mб
Скачать

Термоядерные реакции

Как мы уже отмечали, энергетически возможны ядерные реакции синтеза легких ядер. Но для этого необходимо преодолеть силы кулоновского отталкивания, чтобы сблизить ядра на расстояния радиуса действия ядерных сил. Необходимая для этого энергия должна иметь величину:

Оценим порядок необходимой энергии для случая .

Оценим теперь температуру, при которой могут быть достигнуты такие энергии:

Т.е. для сближения ядер на такие расстояния необходима температура порядка нескольких миллиардов градусов.

Это очень высокие температуры. Такие температуры реализуются в частности в звездах. При этом там идут реакции выгорания водорода и образования гелия. Эта реакция идет в три этапа.

На первом этапе идет реакция слияния водорода с образованием дейтерия, позитрона и нейтрино:

На втором этапе идет реакция синтеза водорода и дейтерия с образованием изотопа гелия и -квантов:

На третьем этапе идет реакция синтеза изотопов гелия с образованием гелия и водорода:

Кроме того, возможны реакции с участием ядер катализаторов.

Водородная бомба

Расчеты показывают, что легче всего идет реакция:

Здесь - изотоп тяжелого водорода - дейтерий, - изотоп тяжелого водорода - тритий.

Но для этого, как отмечалось, необходима очень высокая температура. Поэтому вначале в очень прочной оболочке взрывают атомную бомбу, при этом развиваются необходимые температуры и начинает идти реакция неуправляемого ядерного синтеза ‑ термоядерный взрыв.

Управляемые термоядерные реакции

К ак мы говорили, для ядерной реакции синтеза легких ядер необходимы температуры порядка нескольких миллиардов градусов. Но здесь необходимо учесть, что частицы, находящиеся при некоторой температуре, распределены по скоростям, так называемое распределение Максвелла по скоростям (см. рис. 5). И данной температуре соответствует средняя скорость частиц - . Но из рис. 3.29 вытекает, что при этой температуре существуют частицы с большими скоростями. Т.е. существуют частицы, обладающие энергией, соответствующей гораздо большей температуре, чем средняя температура вещества. Кроме того, необходимо не забывать о квантовом эффекте - туннельном эффекте. Поэтому условия для ядерного синтеза могут реализоваться и при более низких температурах.

В 1964 году удалось получить плазму, температура которой порядка нескольких десятков миллионов. Однако для управляемого термоядерного синтеза предстоит решить еще очень много проблем. Например, где, в какой емкости должна идти эта реакция. Ведь при температуре в несколько миллионов градусов стенки реактора мгновенно превратятся в пар. Существуют также и другие проблемы.

Элементарные частицы Виды взаимодействий элементарных частиц

В настоящее время элементарными частицами называют большую группу мельчайших частиц материи, которые не являются атомами или атомными ядрами (за исключением протона — ядра атома водорода) и которые при взаимодействии ведут себя как единое целое. Характерным свойством всех элементарных частиц является их способность к взаимным превращениям (рождению и уничтожению) при взаимодействии с другими частицами.

Ситуация с определением элементарности усложнилась после того, как выяснилось, что многие из этих частиц имеют внутреннюю структуру.

Известны четыре вида взаимодействий (фундаментальные взаимодействия) между элементарными частицами: сильное, электромагнитное, слабое и гравитационное.

Эти взаимодействия отличаются интенсивностью процессов, вызываемых среди элементарных частиц. Об интенсивности взаимодействий можно судить по скорости (или степени вероятности) процессов, вызываемых ими. Обычно для сравнения берут скорости процессов при энергиях сталкивающихся частиц около 1 ГэВ (такая энергия характерна для физики элементарных частиц). Сравнительные характеристики этих четырех типов взаимодействия приведены в табл. 1, где указаны интенсивности взаимодействий по сравнению с сильным, принятым за единицу, а также длительность процессов и радиус действия соответствующих сил.

Таблица .1

Взаимодействие

Интенсивность

Длительность процессов, с

Радиус действия, см

Сильное

Электромагнитное

Слабое

Гравитационное

1

~10-2

10-5

10-39

10-24

10-20

> 10-8

?

10-13

10-16

Сильные взаимодействия обеспечивают связь нуклонов в ядре и удерживают нуклоны в атомных ядрах. Расстояние, на котором проявляется сильное взаимодействие (радиус действия r), составляет примерно 10-13 см. Сильное взаимодействие выступает исключительно в качестве сил притяжения.

Электромагнитное взаимодействие значительно слабее сильных взаимодействий, однако из-за дальнодействия электромагнитные силы во многих случаях оказываются главными. Именно эти силы вызывают разлет осколков, которые образуются при делении атомных ядер. Эти силы ответственны за все электрические и магнитные явления, наблюдаемые нами в различных формах их проявления: оптических, механических, тепловых, химических и т. д. Электромагнитные силы могут быть как силами притяжения (между разноименно заряженными частицами), так и силами отталкивания (между одноименно заряженными частицами).

Слабое взаимодействие ответственно за все виды β-распада ядер, за все процессы взаимодействия нейтрино с веществом, а также за многие распады элементарных частиц. Слабое взаимодействие гораздо слабее не только сильного, но и электромагнитного взаимодействия. Слабое взаимодействие, как и сильное, является короткодействующим.

Гравитационное взаимодействие является универсальным и самым слабым. Ему подвержены все элементарные частицы. Радиус действия не ограничен (r = ∞). Однако в процессах микромира гравитационное взаимодействие ощутимой роли не играет. Гравитационные силы проявляют себя как силы притяжения.

Для элементарных частиц весьма характерна их многочисленность. В настоящее время открыто несколько сотен частиц, подавляющее большинство которых нестабильно.

По времени жизни τ различают стабильные, квазистабильные и так называемые резонансы. Резонансами называют короткоживущие частицы, распадающиеся за счет сильного взаимодействия с временем жизни ~ 10-23 с. Нестабильные частицы с временем жизни, превышающим 10-20 с, распадаются за счет электромагнитного или слабого взаимодействия. По сравнению с характерным ядерным временем (10-23 с) время 10-20 следует считать большим. По этой причине их и называют квазистабильными. Стабильными же частицами (τ → ∞) являются только фотон, электрон, протон и нейтрино.

Переносчики взаимодействия. Это особая группа элементарных частиц, в которую входят фотоны (переносчики электромагнитного взаимодействия), промежуточные векторные бозоны (переносчики слабого взаимодействия), так называемые глюоны (переносчики сильного взаимодействия) и гипотетические гравитоны (переносчики гравитационного взаимодействия).