Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций часть 2 бакалавры.doc
Скачиваний:
54
Добавлен:
17.08.2019
Размер:
6.51 Mб
Скачать

Дифракция Фраунгофера на дифракционной решетке

Одномерная дифракционная решетка — система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ши­рине непрозрачными промежутками. На рис. 3-7 для наглядности показаны только две соседние щели MN и CD. Ширина каждой щели а, а ширина не­прозрачных участков между щелями b, величина d = a + b называется постоянной дифракционной решетки (периодом). Щели находятся друг от друга на одинаковых расстояниях поэтому разности хода лучей, идущих от соседних щелей, будут для данного направления одина­ковы в пределах всей дифракционной решетки:

. (11)

В точке В на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и распространялись под углом к направлению падающей волны.

Колебание в точке В является результатом интерференции вторичных волн, проходящих от разных щелей. Для того, чтобы в точке В наблюдался интерференционный максимум, разность хода Δ между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн (четному числу полуволн):

(m=0, 1, 2, …). (12)

При разности хода, равной нечетному числу полуволн, в точке В будет наблюдаться интерференционный минимум:

(m=0, 1, 2, …). (13)

При пропускании через решетку белого света все максимумы, кроме цен­трального (m = 0), разложатся в спектр, фиолетовая область которого будет обра­щена к центру дифракционной картины, красная — наружу. Это следует из формулы (3-12) в которой угол отклонения m – го максимума  . Это используется для иссле­дования спектрального состава света (оп­ределения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор. Распределение энергии по спектрам разных порядков показывает, что значительная часть энергии сосредоточе­на в спектре нулевого порядка (рис. 3-6, б ) и по мере перехода к высшим порядкам энергия быстро убывает. Спектральные приборы, снабженные таки­ми дифракционными решетками, были бы мало светосильны. Устранить данный недостаток предложил английский физик Дж. У. Рэлей, а осуществил это предложение американский физик Р.У.Вуд. Было предложено ввести дополнительную разность хода в пре­делах каждого штриха решетки. С этой целью решетку гравируют так, что каждая борозда имеет определенный профиль, благодаря чему при отражении (или при прохождении) возникает добавочная раз­ность хода от одного края борозды до другого (рис. 3-8). Подбирая профиль борозды, удается сконцентрировать энергию в спектре того или иного порядка, ослабляя остальные, в том числе и самый яркий спектр нулевого порядка. Решетки подобного типа позволили сделать дифракционные спектрографы инструментом, превосходящим по све­тосиле обычные п ризматические спектрографы.

Решетки, изображенные на рис. 8, представляют собой фазовые решетки, отдельные элементы которых отличаются не различием в отражающей или пропускающей способности, влияю­щей на амплитуду волны, а своей способностью изменять фазу волны. В данном случае изменение фазы происходит вследствие геометриче­ской формы пластинки, отражающей или пропускающей волну.

Мож­но воздействовать на фазу волны за счет различия в показателе преломления пропускающего слоя при его неизменной толщине; тако­го рода фазовые решетки удается создавать, вызывая в прозрачном теле ультраакустическую волну.

Ф азовая отражательная решетка, использующая различие в изменении фазы при полном вну­треннем отражении от се­ребра и стекла показана на рис. 9. Для этого на гипотенузную грань стеклянной 90-градусной поворотной призмы были нанесены полоски серебра, которые разделены полосками стекла без серебрения. При падении света со стороны стекла интен­сивность света, отраженного от тех или иных полосок, практичес­ки одинакова (за счет полного внутреннего отражения), но возникает разли­чие в фазах, которое и приводит к обра­зованию дифракционной картины. Возможны, конечно, решетки амплитудно-фазовые, т.е. воздей­ствующие одновременно как на фазу, так и на ам­плитуду.