Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций часть 2 бакалавры.doc
Скачиваний:
54
Добавлен:
17.08.2019
Размер:
6.51 Mб
Скачать

Дифракция Фраунгофера на одной щели

Немецкий физик И. Фраунгофер (1787— 1826) рассмотрел дифракцию плоских све­товых волн, или дифракцию в параллель­ных лучах. Дифракция Фраунгофера наблюдается в том случае, когда источник света и точка наблюдения бесконечно уда­лены от препятствия, вызвавшего диф­ракцию. Для этого достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину иссле­довать в фокальной плоскости второй со­бирающей линзы, установленной за препятствием.

Рассмотрим дифракцию Фраунгофера от бесконечно длинной щели (для этого практически достаточно, чтобы длина ще­ли была значительно больше ее ширины). Пусть плоская монохроматическая свето­вая волна падает нормально плоскости узкой щели шириной MN = а (рис. 6, а). Опти­ческая разность хода между крайними лучами МС и ND, идущими от щели в произвольном направлении ,

,

где F — основание перпендикуляра, опу­щенного из точки М на луч ND.

Р азобьем часть волновой поверхности в плоскости щели MN на зоны Френеля в виде полос, параллель­ных ребру М щели. Ширина каждой зоны выбирается таким образом, чтобы разность хода от краев этих зон была равна /2. На ширине щели тогда уместится зон. (8)

Если свет на щель падает нормально, то плоскость щели совпадает с фронтом волны и все точки фронта в плоскости щели будут колебаться в одной фазе. Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля будут иметь равные площади и одинаковый наклон к направлению наблюдения.

Как следует из (3-8), число зон Френеля, укладывающихся на ширине щели, зависит от угла и определяет ре­зультат наложения всех вторичных волн. При интерференции колебания от каждой пары соседних зон взаимно погашают друг друга, следова­тельно, если число зон Френеля четное, т.е. , то (9)

где m – натуральный ряд чисел, m = 1, 2, 3, … .

Таким образом в точке В наблюдается дифракционный минимум (полная темнота) первого, второго, третьего и т.д. порядков.

Если число зон Френеля нечетное, т.е. , то (10)

где m – натуральный ряд чисел, m = 0, 1, 2, 3, … и наблюдается дифракционный максимум нулевого, первого, второго, третьего и т.д. порядков, соответствующий действию одной некомпенсированной зоны Френеля.

В прямом направлении ( = 0) щель действует как одна зона Френеля, и свет распространя­ется с наибольшей интенсивностью, т. е. в точке В0 наблюдается центральный дифракционный максимум.

Распределение ин­тенсивности (дифракционный спектр), получаемое из-за дифракции, приведено на рис. 3-6, б. Положение дифракционных максиму­мов зависит от длины волны , поэтому такой вид дифракционная карти­на имеет лишь для монохроматического света. При освещении щели белым светом центральный максимум имеет вид белой полоски; он общий для всех длин волн (при = 0 разность хода равна нулю для всех ).

Справа и слева от центрального видны максимумы пер­вого, второго и других порядков, причем ближе к центру дифракционной картины располагается фиолетовый край спектра (т.к. длина волны фиолетового света меньше длины волны красного света и в соответствие с формулой (3-10) угол отклонения фиолетовых линий меньше угла отклонения линий красного цвета для конкретного порядка.