Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс лекций часть 2 бакалавры.doc
Скачиваний:
55
Добавлен:
17.08.2019
Размер:
6.51 Mб
Скачать

Дифракция на пространственной решетке

Дифракция света наблюдается не только на плоской одномерной решетке (штрихи нанесены перпендикулярно некоторой пря­мой линии), но и на двумерной решетке (штрихи нанесены во взаимно перпендику­лярных направлениях в одной и той же плоскости). Большой интерес представля­ет также дифракция на пространственных (трехмерных) решетках — пространствен­ных образованиях, в которых элементы структуры подобны по форме, имеют гео­метрически правильное и периодически по­вторяющееся расположение, а также по­стоянные (периоды) решеток, соизмери­мые с длиной волны электромагнитного Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения. Кристаллы, являясь трехмерными пространственными решетками, имеют постоянную порядка 10-10 м и непригодны для наблюдения дифракции в видимом свете ( 510-7 м). Не­мецкий физик М. Лауэ (1879—1960) пришёл к выводу, что в качестве естествен­ных дифракционных решеток для рентге­новского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с длиной волны рентгеновского излучения (10-12 10-8 м).

Советский физик Г.В. Вульф и английские физики Г. и Л. Брэгг независимо друг от друга предложили простой метод расчета дифракции рентгеновского излучения от кристалличе­ской решетки. Они предположили, что происходит дифракция рентгеновских лучей при их отражении от системы па­раллельных кристаллографических плос­костей отстоящих друг от друга на расстоянии d (плоскостей, в которых лежат атомы кристаллической решетки). Монохроматический пучок параллель­ных рентгеновских лу­чей (1,2) падает под углом скольжения (между направлением падающих лу­чей и кристаллографической плоскостью) и возбуждает атомы кристаллической ре­шетки, которые становятся источниками когерентных вторичных волн 1' и 2', интер­ферирующих между собой, подобно вто­ричным волнам, от щелей дифракционной решетки (рис. 3-10).

Диф­ракционные максимумы наблюдаются в направлениях, в которых все волны, отра­женные атомными плоскостями, бу­дут находиться в одинаковой фазе. Эти направления удовлетворяют формуле Вульфа — Брэггов

(m=1, 2, 3, ...), (14)

т . е. при разности хода между двумя лучами, отраженными от соседних кри­сталлографических плоскостей, кратной целому числу длин волн , наблюдается дифракционный максимум. Если рентгеновское излучение падает на кристалл под углами скольжения отличными от угла , который удовлетворяет соотношению (3-14), то дифракция не воз­никает.

Формула Вульфа — Брэггов использу­ется при решении двух задач:

1. Наблюдая дифракцию рентгенов­ских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя и m, можно найти межплоскостное расстояние (d), т. е. оп­ределить структуру вещества (рентгеноструктурный анализ кристаллов).

2. Наблюдая дифракцию рентгенов­ских лучей неизвестной длины волны на кристаллической структуре при известном d и измеряя и m, можно найти длину волны падающего рентгеновского излуче­ния. Этот метод лежит в основе рентгенов­ской спектроскопии.