
- •Часть 1. Введение в процесс моделирования 13
- •Глава 1. Зачем мы моделируем 13
- •Глава 2. Введение в язык uml 21
- •Часть 1. Введение в процесс моделирования Глава 1. Зачем мы моделируем
- •Значение моделирования
- •Принципы моделирования
- •Объектное моделирование
- •Глава 2. Введение в язык uml
- •Обзор uml
- •Где используется uml
- •Концептуальная модель uml
- •Строительные блоки uml
- •Правила языка uml
- •Общие механизмы языка uml
- •Архитектура
- •Жизненный цикл разработки по
- •Глава 3. Здравствуй, мир !
- •Ключевые абстракции
- •Механизмы
- •Компоненты
- •Часть II. Основы структурного моделирования Глава 4. Классы
- •Введение
- •Термины и понятия
- •Атрибуты
- •Операции
- •Организация атрибутов и операций
- •Обязанности
- •Другие свойства
- •Типичные приемы моделирования Словарь системы
- •Распределение обязанностей в системе
- •Непрограммные сущности
- •Примитивные типы
- •Глава 5. Отношения
- •Введение
- •Термины и понятия
- •Зависимости
- •Обобщения
- •Ассоциации
- •Другие свойства
- •Типичные приемы моделирования Простые зависимости
- •Одиночное наследование
- •Структурные отношения
- •Глава 6. Общие механизмы
- •Введение
- •Термины и понятия
- •Примечания
- •Другие дополнения
- •Стереотипы
- •Помеченные значения
- •Ограничения
- •Стандартные элементы
- •Типичные приемы моделирования Комментарии
- •Новые строительные блоки
- •Новые свойства
- •Новая семантика
- •Глава 7. Диаграммы
- •Введение
- •Термины и понятия
- •Структурные диаграммы
- •Диаграммы поведения
- •Типичные приемы моделирования
- •Различные уровни абстракции
- •Сложные представления
- •Глава 8. Диаграммы классов
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Типичные примеры применения
- •Типичные приемы моделирования Простые кооперации
- •Логическая схема базы данных
- •Прямое и обратное проектирование
- •Часть III. Изучение структурного моделирования Глава 9. Углубленное изучение классов
- •Введение
- •Термины и понятия
- •Классификаторы
- •Видимость
- •Область действия
- •Абстрактные, корневые, листовые и полиморфные элементы
- •Кратность
- •Атрибуты
- •Операции
- •Шаблоны классов
- •Стандартные элементы
- •Типичные приемы моделирования Семантика класса
- •Глава 10. Углубленное изучение отношений
- •Введение
- •Термины и понятия
- •Зависимости
- •Обобщения
- •Ассоциации
- •Реализация
- •Типичные приемы моделирования Сети отношений
- •Глава 11. Интерфейсы, типы и роли
- •Введение
- •Термины и понятия
- •Операции
- •Отношения
- •Как разобраться в интерфейсе
- •Типы и роли
- •Типичные приемы моделирования Стыковочные узлы системы
- •Статические и динамические типы
- •Глава 12. Пакеты
- •Введение
- •Термины и понятия
- •Элементы, принадлежащие пакету
- •Видимость
- •Импорт и экспорт
- •Обобщения
- •Стандартные элементы
- •Типичные приемы моделирования Группы элементов
- •Архитектурные виды
- •Глава 13. Экземпляры
- •Введение
- •Термины и понятия
- •Абстракции и экземпляры
- •Операции
- •Состояние
- •Другие особенности
- •Стандартные элементы
- •Типичные приемы моделирования Конкретные экземпляры
- •Экземпляры-прототипы
- •Глава 14. Диаграммы объектов
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Типичные примеры применения
- •Типичные приемы моделирования Объектные структуры
- •Прямое и обратное проектирование
- •Часть IV. Основы моделирования поведения Глава 15. Взаимодействия
- •Введение
- •Термины и понятия
- •Контекст
- •Объекты и роли
- •Сообщения
- •Последовательности
- •Представление
- •Типичные приемы моделирования Поток управления
- •Глава 16. Прецеденты
- •Введение
- •Термины и понятия
- •Прецеденты и актеры
- •Прецеденты и поток событий
- •Прецеденты и сценарии
- •Прецеденты и кооперации
- •Организация прецедентов
- •Другие возможности
- •Типичные приемы моделирования Поведение элемента
- •Глава 17. Диаграммы прецедентов
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Типичные примеры применения
- •Типичные приемы моделирования Контекст системы
- •Требования к системе
- •Прямое и обратное проектирование
- •Глава 18. Диаграммы взаимодействий
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Диаграммы последовательностей
- •Диаграммы кооперации
- •Семантическая эквивалентность
- •Типичные примеры применения
- •Типичные приемы моделирования Потоки управления во времени
- •Структура потоков управления
- •Прямое и обратное проектирование
- •Глава 19. Диаграммы деятельности
- •Введение
- •Термины и понятия
- •Общие свойства
- •Наполнение
- •Состояния действия и состояния деятельности
- •Переходы
- •Ветвление
- •Разделение и слияние
- •Дорожки
- •Траектория объекта
- •Типичные примеры применения
- •Типичные приемы моделирования Рабочий процесс
- •Операция
- •Прямое и обратное проектирование
- •Часть V. Более сложные аспекты поведения Глава 20. События и сигналы
- •Введение
- •Термины и понятия
- •Виды событий
- •Сигналы
- •События вызова
- •События времени и изменения
- •Посылка и получение событий
- •Типичные приемы моделирования Семейства сигналов
- •Исключения
- •Глава 21. Автоматы
- •Введение
- •Термины и понятия
- •Контекст
- •Состояния
- •Переходы
- •Более сложные аспекты состояний и переходов
- •Подсостояния
- •Типичные приемы моделирования Жизненный цикл объекта
- •Глава 22. Процессы и нити
- •Введение
- •Термины и понятия
- •Поток управления
- •Классы и события
- •Стандартные элементы
- •Коммуникация
- •Синхронизация
- •Представления с точки зрения процессов
- •Типичные приемы моделирования Несколько потоков управления
- •Межпроцессная коммуникация
- •Глава 23. Время и пространство
- •Введение
- •Термины и понятия
- •Местоположение
- •Типичные приемы моделирования Временные ограничения
- •Распределение объектов
- •Мигрирующие объекты
- •Глава 24. Диаграммы состояний
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Типичные примеры использования
- •Типичные приемы моделирования Реактивные объекты
- •Прямое и обратное проектирование
- •Часть VI. Архитектурное моделирование Глава 25. Компоненты
- •Введение
- •Термины и понятия
- •Компоненты и классы
- •Компоненты и интерфейсы
- •Заменяемость двоичного кода
- •Виды компонентов
- •Организация компонентов
- •Стандартные элементы
- •Типичные приемы моделирования Исполняемые программы и библиотеки
- •Интерфейс прикладного программирования
- •Исходный код
- •Глава 26. Развертывание
- •Введение
- •Термины и понятия
- •Узлы и компоненты
- •Организация узлов
- •Соединения
- •Типичные приемы моделирования Процессоры и устройства
- •Распределение компонентов
- •Глава 27. Кооперации
- •Введение
- •Термины и понятия
- •Структуры
- •Поведение
- •Организация коопераций
- •Типичные приемы моделирования Реализация прецедента
- •Реализация операции
- •Механизм
- •Глава 28. Образцы и каркасы
- •Введение
- •Термины и понятия
- •Образцы и архитектура
- •Механизмы
- •Каркасы
- •Типичные приемы моделирования Образцы проектирования
- •Архитектурные образцы
- •Глава 29. Диаграммы компонентов
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Типичные примеры применения
- •Типичные приемы моделирования Исходный код
- •Исполняемая версия
- •Физическая база данных
- •Адаптивные системы
- •Прямое и обратное проектирование
- •Глава 30. Диаграммы развертывания
- •Введение
- •Термины и понятия
- •Общие свойства
- •Содержание
- •Типичное применение
- •Типичные приемы моделирования Встроенная система
- •Клиент-серверная система
- •Полностью распределенная система
- •Прямое и обратное проектирование
- •Глава 31. Системы и модели
- •Введение
- •Термины и понятия
- •Системы и подсистемы
- •Модели и представления
- •Трассировка
- •Типичные приемы моделирования Архитектура системы
- •Системы систем
- •Часть VII. Подведем итоги Глава 32. Применение uml
- •Переход к uml
- •Рекомендуемая литература
- •Диаграммы
- •Приложение в Стандартные элементы uivil
- •Стереотипы
- •Помеченные значения
- •Ограничения
- •Приложение с. Рациональный Унифицированный Процесс
- •Характеристики процесса
- •Фазы и итерации
- •Итерации
- •Циклы разработки
- •Рабочие процессы
- •Артефакты
- •Другие артефакты
- •Глоссарий
Типичные примеры применения
Диаграммы компонентов используются для моделирования статического вида системы с точки зрения реализации (см. главу 2). Этот вид в первую очередь связан с управлением конфигурацией частей системы, составленной из компонентов, которые можно соединять между собой различными способами.
При моделировании статического вида системы с точки зрения реализации диаграммы компонентов, как правило, используются в четырех случаях:
моделирование исходного кода. В большинстве современных объектно-ориентированных языков программирования код пишется в интегрированных средах разработки, которые сохраняют исходные тексты в файлах. Диаграммы компонентов можно применять для моделирования управления конфигурированием этих файлов, которые представляют собой компоненты - рабочие продукты;
моделирование исполняемых версий. Версия - это относительно полный и согласованный набор артефактов, предоставляемый внутреннему или внешнему пользователю. Для системы, составленной из компонентов, версия прежде всего подразумевает те части, которые необходимо поставить для получения работающей системы. При моделировании версий с помощью диаграмм компонентов вы визуализируете, специфицируете и документируете решения, принятые относительно физических составляющих системы, то есть компонентов развертывания;
моделирование физических баз данных. Представляйте себе физическую базу данных как конкретную реализацию схемы, существующую в мире битов. Схемы, по сути дела, описывают API для доступа к хранимой информации; модель же физической базы данных (см. главу 8) представляет способы хранения этой информации в таблицах реляционной базы данных или на страницах объектно-ориентированной БД. Для представления этих и иных видов физических баз данных вы можете пользоваться диаграммами компонентов;
моделирование адаптивных систем. Некоторые системы абсолютно статичны - их компоненты появляются на сцене, принимают участие в выполнении, а затем покидают сцену. Другие системы более динамичны; они включают мобильных агентов или компоненты, которые мигрируют с целью выравнивания нагрузки и восстановления после сбоев. Для представления таких систем применяются диаграммы компонентов совместно с некоторыми другими диаграммами UML.
Типичные приемы моделирования Исходный код
При разработке программы на языке Java исходный код обычно сохраняют в файлах с расширением java. Программы, написанные на языке C++, обычно хранят исходный код в заголовочных файлах с расширением . h и в файлах реализации с расширением . срр. При использовании языка IDL для разработки приложений СОМ+ или CORBA один, с точки зрения проектирования, интерфейс распадается на четыре исходных файла: сам интерфейс, клиентский заместитель (Proxy), серверная заглушка (Stub) и класс-мост (Bridge class). По мере роста объема приложения, на каком бы языке оно ни было написано, эти файлы придется организовывать в группы. Затем, на стадии сборки приложения, вы, вероятно станете создавать различные варианты одних и тех же файлов для каждой новой промежуточной версии, и захотите поместить все это в систему управления конфигурацией.
В большинстве случаев нет необходимости моделировать этот аспект системы напрямую. Вместо этого вы сообщаете среде разработки, что надо следить за файлами и их отношениями. Иногда, однако, бывает полезно визуализировать исходные файлы и связи между ними с помощью диаграмм компонентов. Применяемые таким образом диаграммы компонентов обычно содержат только компоненты - рабочие продукты со стереотипом file (см. главу 25), а также отношения зависимости между ними. Например, вы могли бы выполнить обратное проектирование набора исходных файлов для визуализации сложной системы зависимостей между ними при компиляции. Можно пойти и в другом направлении, специфицировав отношения между исходными файлами и подав затем эту модель на вход средства компиляции, например make в ОС UNIX. Точно так же можно использовать диаграммы компонентов для визуализации истории набора исходных файлов, хранящихся в системе управления конфигурацией. Получая информацию от этой системы, например о том, сколько раз некоторый файл извлекался для редактирования на протяжении определенного периода времени, вы вправе воспользоваться ею для раскрашивания диаграмм компонентов. Это поможет выявить среди исходных файлов «горячие точки», в которых архитектура системы наиболее часто подвергается модификации.
Моделирование исходного кода системы осуществляется следующим образом:
1. С помощью прямого или обратного проектирования идентифицируйте представляющие интерес наборы исходных файлов и смоделируйте их в виде компонентов со стереотипом file.
2. Для больших систем воспользуйтесь пакетами, чтобы показать группы исходных файлов.
3. Подумайте о том, чтобы с помощью помеченных значений явно показать такую информацию, как номер версии файла, его автора и дату последнего изменения (для отслеживания таких значений пользуйтесь инструментальными средствами).
4 Моделируйте зависимости компиляции между исходными файлами с помощью отношений зависимости (для генерирования таких зависимостей применяйте инструментальные средства).
В качестве примера на рис. 29.2 показано пять исходных файлов, из которых signal. h - заголовочный. Приведены три его версии начиная с самой последней. Каждая версия помечена значением, содержащим ее номер.
Этот заголовочный файл (signal .h) используется двумя другими файлами Onterp. срр и signal. срр). Один из них (interp. срр) зависит при компиляции от другого заголовочного файла (irq.h). В свою очередь файл device, срр зависит от interp. срр. При наличии такой диаграммы компонентов легко проследить, что произойдет при изменениях. Так, изменение исходного файла signal .h потребует перекомпиляции Jpex других файлов: signal. срр, infcerp. срр и, транзитивно, device. срр. Из той же диаграммы видно, что файл irq. h такое изменение не затронет.
Подобные диаграммы легко генерируются путем обратного проектирования на
основе информации, хранящейся в системе управления конфигурацией.