
- •Оглавление
- •Раздел 0. Теоретические основы математического анализа в экономике 4
- •Введение
- •Раздел 0.Теоретические основы математического анализа в экономике
- •1.1. Предвидение и его формы
- •1.2. Сущность и основные понятия
- •1.3. Роль и место математических методов в процессе принятии управленческих решений
- •1.4. Классификация прогнозов
- •1.5. Классификация методов прогнозирования
- •Трендовая модель прогнозирования
- •Задачи анализа временного ряда
- •Механическое сглаживание
- •Тестовый способ определения вида уравнения (типа) тренда
- •Анализ цикличности (сезонности)
- •1.6. Принципы прогнозирования
- •1.7. Этапы прогнозирования
- •1.8. Прогнозирование средствами матстатистики
- •Номинальная шкала
- •Ранговая шкала
- •Метрические шкалы
- •Построение графического тренда на основе канала
- •Сглаживание по нечётной базе
- •Сглаживание по четной базе
- •Взвешенное сглаживание
- •Метод экспоненциального сглаживания и его использование в прогнозировании
- •Выбор параметра сглаживания
- •Прогнозирование на основе сглаживания
- •Расчёт параметров уравнения тренда
- •Метод наименьших квадратов
- •Тренды на основе сплайн-функций
- •Критерии случайности
- •1.9. Понятие регрессии
- •Регрессионные модели
- •Отбор факторов для регрессии
- •Вид функции регрессии
- •Расчет параметров регрессии
- •Прогнозирования на основе регрессионных моделей
- •Авторегрессия
- •1.10. Производственные функции
- •Функция Кобба-Дугласа. Общая характеристика
- •1.12. Оптимизационные методы прогнозирования
- •Определение оптимального ассортимента
- •Задачи о «смесях»
- •Задачи о «раскрое»
- •Распределение ресурсов во времени. Оптимальное регулирование запасов
- •1.13. Прочие методы прогнозирования Экспертиза
- •Прогнозирование на основе групповой экспертной оценки
- •Самореализующиеся прогнозы
- •Раздел 1.Основные модели краткосрочного прогноза
- •2.1. Упрощенные модели краткосрочного прогноза
- •2.1.1. Наивная модель на основе предыдущего значения показателя
- •2.1.2. Наивная модель на основе абсолютного прироста за предыдущий интервал времени
- •2.1.3. Наивная модель на основе коэффициента роста за предыдущий интервал времени
- •2.1.4. Наивная модель на основе простого среднего значения
- •2.1.5. Наивная модель на основе среднего абсолютного прироста
- •2.1.6. Наивная модель на основе среднего коэффициента роста
- •2.2. Модель прогноза на основе простого скользящего среднего
- •2.3. Модели прогноза на основе экспоненциальных средних
- •2.3.1. Однопараметрическая модель Брауна
- •2.3.2. Двухпараметрическая модель Хольта
- •2.3.3. Трехпараметрическая модель Хольта-Уинтерса
- •2.3.4. Двухпараметрическая модель Хольта с гипотезой Тейла-Вейджа
- •2.3.5. Трехпараметрическая модель Бокса-Дженкинса
- •2.4. Модели прогнозирования стационарных временных рядов
- •2.4.1. Модели авторегрессии
- •2.4.2. Модели скользящего среднего
- •2.4.3. Модели авторегрессии - скользящего среднего
- •Идентифицирующие свойства для корреляционных и автокорреляционных функций для модификаций модели arma
- •2.5. Модель arima для прогнозирования нестационарных временных рядов
- •Раздел 2.Проблемы выбора модели прогнозирования
- •3.1. Факторы, влияющие на выбор модели прогнозирования
- •Классы проблем и соответствующие им методы прогнозирования
- •3.2. Проблема точности прогноза
- •3.3. Комбинированные модели краткосрочного прогноза
- •3.3.1. Адаптивные селективные модели
- •3.3.2. Адаптивные гибридные модели
- •3.3.3. Общие принципы построения комбинированных моделей
- •Раздел 3.Исследование точности адаптивных гибридных моделей краткосрочного прогноза
- •4.1. Описание упрощённых гибридных моделей краткосрочного прогноза
- •4.1.1. Гибридная модель на основе базового набора из упрощённых моделей
- •4.1.2. Гибридная модель на основе базового набора из моделей на основе экспоненциальных средних
- •4.1.3. Гибридная модель на основе базового набора из моделей авторегрессии и моделей скользящего среднего
- •4.3. Исходные данные для расчётов
- •Характеристика особенностей исследуемых рядов
- •4.4. Обобщение и анализ исследования точности моделей краткосрочного прогноза
- •Степень точности прогнозов по mape
- •Наиболее и наименее точные модели прогноза по mape
- •Заключение
- •Раздел 4.Список использованной литературы
- •Раздел 5.Приложение
- •Прогнозные оценки курса доллара сша
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По наивной модели на основе абсолютного прироста
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По наивной модели на основе коэффициента роста
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По модели Хольта-Уинтерса
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По модели Бокса-Дженкинса
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г.
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По модели авторегрессии второго порядка ar(2)
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По модели скользящего среднего первого порядка ma(1)
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По модели скользящего среднего второго порядка ma(2)
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По гибридной модели на основе упрощенных моделей
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По гибридной модели из моделей на основе экспоненциальных средних
- •Прогнозные оценки курса доллара сша в период с 06.04.10 г. По 28.04.10 г. По гибридной модели из моделей авторегрессии и моделей скользящего среднего
- •Значения критериев точности прогноза
- •Значения критериев точности прогноза производства компьютеров
- •Значения критериев точности прогноза производства бензина
- •Значения критериев точности прогноза продаж хлебных изделий
- •Значения критериев точности прогноза производства мяса
- •Значения критериев точности прогноза производства мороженого
- •Значения критериев точности прогноза продаж оао «Связной сПб»
- •Значения критериев точности прогноза продаж в отдельной торговой точке оао «Связной сПб»
Самореализующиеся прогнозы
Самореализующийся прогноз – социально-экономическое явление, состоящее в наличии социального механизма, приводящего к [не] реализации любого прогноза [высказанного в определённых условиях].
Пример – показ моды, как её прогноз.
В основе механизма лежит столкновение интересов, которое можно описать в терминах т.н. «теории игр» матрицей выигрыша.
Особенно силён этот механизм в биржевой торговле.
Рис. показывает модель поведения брокера фьючерсных контрактов. Задача брокера – заключить сейчас контракт по цене, которая сложится в будущем, т.е. угадать фьючерсный курс (цену). Потери брокера прямопропорциональны размеру неугадывания. Рассмотрим выигрыш (=проигрыш) брокера для диапазона цен 50-100.
Пусть текущее ожидание будущей цены – $70. Брокер, заключив контракт по этой цене, имеет минимальный проигрыш – 0. Вообще говоря, ему абсолютно все равно, по какой цене правильно заключить контракт (50 или 90, или любой прочей). Точно такое же положение у всех брокеров. Если появится прогноз повышения курсов, у брокера появляется стремление следовать этому прогнозу. Таким образом, прогноз осуществляется. Аналогично для прогноза спада.
Рис. 30. Механизм самореализации прогнозов.
Возможность возникновения данного эффекта необходимо учитывать при организации прогнозирования.
Раздел 1.Основные модели краткосрочного прогноза
2.1. Упрощенные модели краткосрочного прогноза
В общем случае модель краткосрочного прогноза имеет вид [21, с. 154]
,
(1)
где
- прогнозное (оценочное) значение уровня
динамического ряда показателя
на момент времени
,
полученное в момент времени
;
-
количество периодов времени, на которое
производится прогноз;
-
фактические (наблюдавшиеся) значения
уровня динамического ряда показателя
в моменты времени
.
Наивное прогнозирование - прогнозирование, основанное на предположении, что предыдущее значение лучше всего предсказывает будущее. Группа простейших (наивных, упрощенных) моделей краткосрочного прогноза объединяет модели, которые используются при недостатке информации о динамике значений прогнозируемых показателей. Прогноз, полученный с использованием этих моделей, не отличается высокой точностью, но дает некоторое приближенное представление о возможном значении исследуемого параметра в будущем [3, с. 51].
2.1.1. Наивная модель на основе предыдущего значения показателя
Наиболее простой (“наивный”) способ прогнозирования основан на предположении, что уровень ряда остается неизменным [21, с. 156]. Простейшая модель прогноза на один интервал вперед в этом случае имеет вид [16, с. 402; 18, с. 55; 21, с. 156]
,
(2)
где
- прогнозное (оценочное) значение
на момент времени
,
полученное в момент времени
;
-
фактическое (наблюдавшееся) значение
в момент времени
.
Идея наивной модели (2) заключается в предположении, что прогнозное значение приближённо равно предыдущему значению [18, с. 55].
Использование простейшей модели (2) в прогнозировании дает хорошие результаты, если наблюдения производятся через короткие периоды времени и характер их изменения не содержит заметных скачков. В некоторых случаях данная наивная модель может давать более точные прогнозные значения, чем сложные прогнозирующие модели [19, с. 402].