Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
FirstCourseGR.pdf
Скачиваний:
38
Добавлен:
07.03.2016
Размер:
7.41 Mб
Скачать
α β
μαβ

135

 

5.5 Noncoordinate bases

 

 

 

 

 

 

β as component indices and α as a label giving the particular tensor referred to. There is one such tensor for each basis vector eα . However, this is not terribly useful, since under a change of coordinates the basis changes and the important quantities in the new system are the new tensors eβ which are obtained from the old ones eα in a complicated way: they are different tensors, not just different components of the same tensor. So the set

in one frame is not obtained by a simple tensor transformation from the set μ

of another frame. The easiest example of this is Cartesian coordinates, where α βμ 0, while they are not zero in other frames. So in many books it is said that μαβ are not components of tensors. As we have seen, this is not strictly true: μαβ are the (μ, β) com-

are

αβ , so

 

 

αβ

 

 

ponents of a set of 11

 

tensors eα

. But there is no single 21

tensor whose components

 

μ

expressions like μ

Vα are not components of a single tensor, either. The

combination

Vβ ,α + Vμ β μα

isa component of a single tensor V.

5.5 N o n co o rd i n a t e b a s e s

In this whole discussion we have generally assumed that the non-Cartesian basis vectors were generated by a coordinate transformation from (x, y) to some (ξ , η). However, as we shall show below, not every field of basis vectors can be obtained in this way, and we shall have to look carefully at our results to see which need modification (few actually do). We will almost never use non-coordinate bases in our work in this course, but they are frequently encountered in the standard references on curved coordinates in flat space, so we should pause to take a brief look at them now.

Polar coordinate basis

The basis vectors for our polar coordinate system were defined by

eα = β α eβ ,

where primed indices refer to polar coordinates and unprimed to Cartesian. Moreover, we had

β α = xβ /∂xα ,

where we regard the Cartesian coordinates {xβ } as functions of the polar coordinates {xα }. We found that

eα · eβ gα β =δα β ,

i.e. that these basis vectors are not unit vectors.

136

 

Preface to curvature

 

 

 

 

 

Polar unit basis

 

 

 

 

 

Often it is convenient to work with unit vectors. A simple set of unit vectors derived from the polar coordinate basis is:

 

ˆ =

 

 

ˆ =

 

1

 

 

 

 

 

 

 

r

 

 

 

 

er

 

er

, e

θ

 

 

 

eθ ,

(5.76)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a corresponding unit one-form basis

 

 

 

 

 

˜

 

=

 

 

˜

 

 

˜

r

= ˜

 

 

 

 

 

θ

 

 

 

 

ωˆ

 

dr,

 

 

 

ω ˆ

 

 

 

rdθ .

(5.77)

The student should verify that

ˆ

 

 

ˆ

 

 

 

 

 

ˆ

ˆ

 

 

 

 

ˆ

ˆ

 

ω

ω

 

 

g

 

 

 

δ

ˆ

·

ˆ

 

 

 

 

ˆ

=

 

 

 

ˆ

 

eα

e

β

 

 

g

αβ

 

 

δ

αβ

,

 

˜

α

· ˜

β

 

ˆ

αβ

=

 

ˆ

αβ

(5.78)

 

 

 

 

 

 

 

 

 

 

 

 

so these constitute orthonormal bases for the vectors and one-forms. Our notation, which is fairly standard, is to use a ‘caret’ or ‘hat’, ˆ, above an index to denote an orthornormal basis. Now, the question arises, do there exist coordinates (ξ , η) such that

 

 

 

erˆ

= eξ =

 

x

ex +

 

y

ey

(5.79a)

 

 

 

∂ξ

∂ξ

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eθ

eη

x

ex

y

ey?

(5.79b)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

= = ∂η

+ ∂η

 

 

If so, then er, e

θ

are the basis for the coordinates (ξ , η) and so can be called a coordinate

 

{ ˆ

 

 

 

 

 

 

 

 

 

 

 

 

ˆ }

 

 

 

 

 

 

 

 

 

 

 

basis; if such (ξ , η) can be shown not to exist, then these vectors are a noncoordinate basis. The question is actually more easily answered if we look at the basis one-forms. Thus, we

seek (ξ , η) such that

 

˜ θ

=

 

˜

=

 

 

 

 

˜

 

 

+

 

 

 

˜

 

(5.80)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωrˆ

=

 

dξ

 

 

∂ξ /∂x dx

+

∂ξ /∂y dy,

 

 

 

 

 

 

˜

 

˜

= ∂η/∂x ˜

 

 

 

 

 

˜

 

˜

 

˜

 

ω ˆ

 

 

dη

 

˜

dx

 

 

 

 

 

∂η/∂y dy.

 

 

ˆ

θ

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

 

 

 

 

 

Since we know ω

r

 

in terms of dr and dθ , we have, from Eqs. (5.26) and (5.27),

 

and ω ˆ

 

 

 

 

ω ˆ

 

 

 

r dθ

 

 

 

 

sin θ dx

 

 

cos θ dy.

 

 

 

 

 

ωrˆ

=

dr

=

cos θ dx

+

 

sin θ dy,

 

 

 

 

 

 

 

˜ θ

 

˜

= −

˜

 

 

+

˜

˜

 

(5.81)

 

 

˜

˜

=

 

 

˜

 

 

 

 

 

˜

 

 

 

 

 

 

 

˜

θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(The orthonormality of ωrˆ

and ω

 

ˆ

are obvious here.) Thus if (ξ , η) exist, we have

 

 

 

 

 

 

∂η

 

= − sin θ ,

∂η

 

= cos θ .

 

(5.82)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

y

 

 

If this were true, then the mixed derivatives would be equal:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂η

=

∂ ∂η

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

(5.83)

 

 

 

 

 

 

 

 

 

 

 

y x

x

y

 

 

 

This would imply

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(sin θ ) =

(cos θ )

 

 

(5.84)

 

 

 

 

 

 

 

 

 

 

 

y

x

137

 

 

 

 

5.5 Noncoordinate bases

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or

(x2 + y2)

+ x

(x2

+ y2)

= 0.

 

 

 

 

y

 

 

 

 

y

 

 

 

 

 

 

 

 

x

 

 

 

 

This is certainly not true. Therefore ξ and η do not exist: we have a noncoordinate basis.

 

 

 

 

 

 

 

 

 

dr and dθ themselves.)

 

(If this manner of proof is surprising, try it on ˜

 

 

 

˜

 

 

 

 

 

In textbooks that deal with vector calculus in curvilinear coordinates, almost all use the

 

unit orthonormal basis rather than the coordinate basis. Thus, for polar coordinates, if a

 

vector has components in the coordinate basis PC,

Vα

 

 

 

 

 

 

 

 

 

V

PC

(a, b)

= {

}

,

 

(5.85)

 

 

 

 

 

 

−→

 

 

 

 

 

 

 

 

then it has components in the orthonormal basis PO

 

 

 

 

 

 

 

 

 

PO

 

 

 

= {

Vαˆ

}

 

 

 

 

 

 

 

 

V

−→

(a, rb)

.

 

(5.86)

 

 

 

 

 

 

 

 

 

 

 

 

So if, for example, the books calculate the divergence of the vector, they obtain, instead of our Eq. (5.56),

 

1

(r V

 

1

ˆ .

(5.87)

· V = r r

ˆ ) + r ∂θ V

 

 

 

 

 

r

 

 

 

 

θ

 

The difference between Eqs. (5.56) and (5.87) is purely a matter of the basis for V.

General remarks on noncoordinate bases

The principal differences between coordinate and noncoordinate bases arise from the fol-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lowing. Consider an arbitrary scalar field

 

 

 

 

 

 

 

 

 

dφ(e

μ

), where e is a basis

φ and the number ˜

 

 

μ

vector of some arbitrary basis. We have used the notation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

=

φ

 

.

 

 

 

 

 

 

 

(5.88)

 

 

 

dφ(e

μ

 

,μ

 

 

 

 

 

 

 

 

 

 

˜

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

)

∂φ/∂xμ

and we have, as

Now, if e

 

 

 

 

 

 

 

 

 

dφ(e

 

 

 

μ

is a member of a coordinate basis, then ˜

 

μ

 

 

 

 

 

 

defined in an earlier chapter,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

φ,μ =

∂φ

: coordinate basis.

 

 

 

 

 

(5.89)

 

 

 

 

 

 

 

 

 

 

xμ

 

 

 

 

 

But if no coordinates exist for {eμ}, then Eq. (5.89) must fail. For example, if we let Eq. (5.88) define φ,μˆ , then we have

 

 

 

1 ∂φ

 

 

 

φ

θ

 

 

 

 

.

 

 

(5.90)

 

 

 

 

 

, ˆ = r ∂θ

 

 

 

In general, we get

 

 

 

 

 

 

 

 

 

αˆ φ φ,αˆ = β

αˆ β φ = β

 

∂φ

(5.91)

αˆ

 

xβ

for any coordinate system {xβ } and noncoordinate basis {eαˆ }. It is thus convenient to continue with the notation, Eq. (5.88), and to make the rule that φ,μ = ∂φ/∂xμ only in a coordinate basis.

138

 

 

 

 

 

 

 

Preface to curvature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Christoffel symbols may be defined just as before

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

ˆ =

μˆ

ˆ ˆ

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β eα

 

αβ eμ,

 

 

 

 

(5.92)

 

but now

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

=

α

 

,

 

 

 

 

 

(5.93)

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xα

 

 

 

 

 

 

 

{

 

}

 

 

 

 

 

β

{

ˆ }

 

β

 

 

 

 

 

 

 

 

 

 

 

 

where

xα

is any coordinate system and

any basis (coordinate or not). Now, however,

 

 

 

e

β

 

we cannot prove that μˆ αβ

μˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

 

, since that proof used φ,α,β

φ,β,α , which was true

 

 

 

 

 

 

ˆ

ˆ =

 

ˆα

 

 

 

 

 

 

 

 

ˆ

 

ˆ =

ˆ

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in a coordinate basis (partial derivatives commute) but is not true otherwise. Hence, also,

 

Eq. (5.75) for μαβ in terms of gαβ,γ applies only in a coordinate basis. More general

 

expressions are worked out in Exer. 20, § 5.8.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What is the general reason for the nonexistence of coordinates for a basis? If

ωα¯

}

is a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dxα

}

is

 

 

{ ˜

 

 

coordinate one-form basis, then its relation to another one {˜

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωα¯

=

α¯

 

dxβ

 

 

xα¯

dxβ .

 

 

 

 

(5.94)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˜

 

β

˜

 

= xβ

 

 

 

 

 

 

 

The key point is that α¯ β , which is generally a function of position, must actually be the partial derivative xα¯ /∂xβ everywhere. Thus we have

 

 

 

2xα¯

 

 

2xα¯

 

 

 

 

α¯ β

=

 

 

=

 

 

=

 

α¯ γ .

(5.95)

 

xγ

xγ xβ

xβ xγ

xβ

These ‘integrability conditions’ must be satisfied by all the elements α¯ β

in order for ωα¯

 

 

 

 

 

 

 

 

 

 

 

 

˜

to be a coordinate basis. Clearly, we can always choose a transformation matrix for which this fails, thereby generating a noncoordinate basis.

Noncoordinate bases in this book

We shall not have occasion to use such bases very often. Mainly, it is important to understand that they exist, that not every basis is derivable from a coordinate system. The algebra of coordinate bases is simpler in almost every respect. We may ask why the standard treatments of curvilinear coordinates in vector calculus, then, stick to orthonormal bases. The reason is that in such a basis in Euclidean space, the metric has components δαβ , so the form of the dot product and the equality of vector and one-form components carry over directly from Cartesian coordinates (which have the only orthonormal coordinate basis!). In order to gain the simplicity of coordinate bases for vector and tensor calculus, we have to spend time learning the difference between vectors and one-forms!

5.6 L o o k i n g a h e a d

The work we have done in this chapter has developed almost all the notation and concepts we will need in our study of curved spaces and spacetimes. It is particularly important that the student understands §§ 5.25.4 because the mathematics of curvature will be developed

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]