
- •Введение Важнейшие проблемы народного хозяйства России
- •Улучшение качественных характеристик
- •Снижение себестоимости производимой промышленной продукции
- •3. Расширение масштабов технического перевооружения промышленных предприятий
- •Тема 1. Системный подход в управлении промышленными технологиями и инновациями
- •Конкурентные преимущества российской экономики.
- •Роль технологии и технологической инфраструктуры в современной экономике. Наукоемкая продукция и макротехнологии. Пути интеграции в мировой рынок наукоемкой продукции.
- •1.2. Промышленные технологии и технический прогресс
- •Физический эффект и его модель
- •Основные закономерности проявления физических эффектов
- •Модель физического эффекта
- •1.3. Конкурентоспособность промышленной продукции и пути ее достижения Потребительские свойства и цена продукции
- •Классификация технологий: по функциональному составу – технологии заготовительного, основного и вспомогательного производства
- •Классификация технологий по отраслям народного хозяйства
- •Тема 2. Конструкторская и технологическая подготовка производства
- •1. Конструкторская подготовка производства на основе cad/cam систем: классификация сапр, технические возможности, критерии выбора
- •2. Технологическая подготовка производства на основе cad/cam систем: классификация сапр, технические возможности, критерии выбора
- •Создание системы pdm на предприятии:
- •Тема 3. Промышленные технологии в машиностроении
- •3.1. Технологии переработки сырья и производство промышленных материалов Виды природных ресурсов, их запасы
- •Топливно-энергетическое сырье
- •Металлы
- •Понятие промышленных материалов
- •Стали, классификация сталей, свойства сталей
- •Маркировка стали:
- •Чугуны, классификация чугунов, свойства
- •Цветные сплавы, область применения и свойства
- •Методы и средства определения физико-механических характеристик сталей и сплавов
- •Методика выбора материала
- •Пластмассы: типы, состав, методы получения
- •Керамика, основные виды и область применения
- •Технические керамики
- •Огнеупоры
- •Применение алюминиевых керамик
- •Особенности промышленных технологий металлургического комплекса Доменное производство
- •Продукты доменной плавки
- •Производство стали Сущность процесса
- •Способы выплавки стали
- •Производство стали в электропечах
- •Дуговая плавильная печь.
- •Индукционные тигельные плавильные печи
- •Разливка стали
- •Способы повышения качества стали
- •Прокат и его производство
- •Способы прокатки
- •Технологический процесс прокатки
- •Основы порошковой металлургии
- •1. Основные свойства и классификация металлокерамических материалов
- •2. Получение металлических порошков
- •3. Получение неметаллических порошков
- •4. Формообразование заготовок и изделий из порошков
- •Проблема переработки промышленных отходов, рециклинг
- •3.2. Технологии механической, электро-физической, электро-химической и др. Видов обработки в машиностроении Машина – как объект производства. Классификация машин
- •Качество машин
- •Изделие и его элементы
- •Производственный процесс изготовления машины
- •Технологический процесс, классификация технологических процессов по ес тпп
- •Технологическая операция. Структура технологической операции
- •Заготовительное производство. Основные технологии получения заготовок: литье, ковка, штамповка Способы изготовления заготовок Выбор метода и способа получения заготовки
- •Общие принципы выбора заготовки
- •Способы изготовления отливок Изготовление отливок в песчаных формах
- •Литье в оболочковые формы
- •Литье по выплавляемым моделям
- •Литье в металлические формы
- •Изготовление отливок центробежным литьем
- •Литье под давлением
- •Изготовление отливок электрошлаковым литьем
- •Изготовление отливок непрерывным литьем
- •Способы обработки металлов давлением
- •Классификация процессов обработки давлением
- •Операции ковки
- •Предварительные операции
- •Основные операции
- •Горячая объемная штамповка
- •Формообразование при горячей объемной штамповке
- •Механическая обработка металлов и сплавов
- •Движения для осуществления процесса резания и схема обработки
- •Режим резания и геометрия срезаемого слоя
- •Инструмент для формообразования поверхностей деталей машин
- •Влияние углов резца на процесс резания
- •Физические закономерности (явления) процесса резания
- •1) Стружкообразование и виды стружек.
- •2) Усадка стружки
- •3) Силы резания
- •4) Наростообразование
- •5) Наклеп (упрочнение)
- •6) Тепловыделения в зоне резания
- •7) Трение, износ и стойкость инструмента
- •8) Вибрации при резании металлов
- •9. Точность и качество обработанной поверхности.
- •10. Производительность и выбор режима резания
- •11. Инструментальные материалы
- •Рассмотрим каждую группу материалов подробнее.
- •Металлорежущие станки
- •Классификатор металлорежущих станков ( по энимс)
- •Обработка заготовок на токарных станках
- •1. Типы станков токарной группы
- •Карусельные станки
- •Револьверные станки
- •Токарные автоматы и полуавтоматы
- •1.Станина. 2. Коробка подач. 3. Передняя бабка.
- •3. Типы токарных резцов
- •4. Принадлежности к токарным станкам
- •5. Способы закрепления заготовок
- •6. Работы, выполняемые на токарных станках
- •Обработка заготовок на фрезерных станках
- •1. Особенности процесса фрезерования
- •2. Работы, выполняемые на фрезерных станках.
- •3. Типы фрез.
- •4. Элементы режима резания.
- •5. Машинное время при фрезеровании
- •6. Схемы цилиндрического фрезерования
- •7. Типы фрезерных станков
- •8. Принадлежности к фрезерным станкам
- •9. Делительные головки
- •Обработка на сверлильных и расточных станках
- •1. Работы, выполняемые на сверлильных станках
- •2. Конструкции и геометрия осевых инструментов
- •1) Сверла
- •2) Зенкеры
- •3) Развертки.
- •3. Элементы режима резания
- •4. Типы сверлильных расточных станков
- •Обработка на строгальных, долбежных и протяжных станках
- •1. Особенности процессов строгания, долбления и протягивания
- •2. Строгание и долбление
- •2) Элементы режима резания
- •3. Протягивание
- •4. Станки строгально-протяжной группы
- •Зубонарезание
- •1. Методы нарезания зубчатых колес.
- •2. Схемы обработки методом копирования
- •1) Схема нарезания дисковой модульной фрезой
- •3) Схема нарезания зубодолбежной головкой
- •3. Схемы обработки зубчатых колес методом обкатки
- •1) Схема нарезания червячной фрезой
- •2) Схема нарезания зубодолбяком
- •3) Схема зубострогания
- •Шлифование
- •1. Особенности процесса шлифования
- •2. Характеристика и маркировка абразивного инструмента
- •1) Абразивные материалы
- •2) Зернистость абразивных материалов
- •3) Связка абразивных инструментов
- •4) Твердость абразивных инструментов
- •5) Структура абразивного инструмента
- •6) Классы точности и неуравновешенности шлифовальных кругов
- •7) Форма и размеры абразивного инструмента
- •8) Маркировка шлифовальных кругов
- •3. Основные схемы шлифования
- •1) Круглое шлифование
- •2) Плоское шлифование
- •3) Профильное шлифование
- •4. Шлифовальные станки
- •Отделочные методы обработки
- •1. Обработка абразивными инструментами
- •2. Методы отделки зубьев зубчатых колес
- •3. Обработка методами пластического деформирования
- •Электрохимические и электрофизические методы размерной обработки
- •1. Электрохимические методы
- •2. Электроэрозионные методы
- •3. Ультразвуковая обработка
- •4. Лучевые методы
- •3.3. Автоматизация технологических процессов и производств термины и определения гибких производственных систем
- •Классификация гпс
- •Гибкость гап
- •Cтруктура и уровни асу
- •Основные функции эвм в развитых гибких производствах:
- •Программное управление оборудованием
- •Различают 3 вида dnc - систем
- •Оперативное планирование гпс
- •Тема 4. Промышленные технологии топливно-энергетического комплекса Перспективы развития топливно-энергетического комплекса
- •1. Нефтяной комплекс
- •Нефтедобывающая промышленность
- •Нефтеперерабатывающая промышленность
- •Развитие транспортной инфраструктуры нефтяного комплекса
- •3. Газовая промышленность
- •5. Электроэнергетика
- •6. Атомная энергетика и ядерно-топливный цикл
- •7. Возобновляемые источники энергии и местные виды топлива
- •Тема 5. Наукоемкие промышленные технологии Нанотехнологии
- •История развития нанотехнологии.
- •Основные достижения нанотехнологии.
- •2. Наночастицы
- •3. Новейшие достижения
- •3. Промышленность и сельское хозяйство. Экология.
- •4. Освоение космоса. Информационные и военные технологии.
- •Тема 6. Основы проектирования и управления производственными системами
- •1.1. Организационные технологии проектирования производственных систем
- •Формы проектирования в зависимости от типа производства
- •Методы организационного проектирования производственной системы (пс)
- •Характеристика типов производства
- •Характеристики различных типов производства
6. Атомная энергетика и ядерно-топливный цикл
В России эксплуатируются 30 ядерных энергоблоков на десяти атомных электростанциях с общей установленной мощностью 22,2 ГВт. В их числе 14 энергоблоков с реакторами типа ВВЭР, 11 энергоблоков с реакторами типа РБМК, 4 энергоблока с реакторами типа ЭГП с канальными водографитовыми реакторами и 1 энергоблок на быстрых нейтронах - БН-600.
Выработка электроэнергии российскими атомными электростанциями в 2002 году составила 140 млрд. кВт х ч, коэффициент использования установленной мощности атомных электростанций - 72 процента.
Атомная энергетика с 1998 года обеспечивает ежегодный прирост производства в среднем около 8 млрд. кВт х ч при наличии резерва для увеличения выработки электроэнергии на 20 млрд. кВт х ч.
В указанный период произведен ввод в действие энергоблока в 1 ГВт на Волгодонской атомной станции, предусматривается завершить строительство и ввести до 2011 года шесть энергоблоков мощностью до 6 ГВт, обеспечивая средний темп роста мощности 0,7 ГВт, а электроэнергии - до 5 процентов ежегодно.
Доля атомной энергетики в настоящее время составляет 3,5 процента потребления всех топливно-энергетических ресурсов, 11 процентов установленной мощности и 16 процентов производства электроэнергии России (21 процент в европейской части страны).
Основные направления развития атомной энергетики определены одобренной Правительством Российской Федерации стратегией развития атомной энергетики России в первой половине XXI века.
В результате проведенной многофакторной оптимизации топливно-энергетического баланса определено, что увеличение потребности экономики страны в электроэнергии целесообразно в значительной степени покрывать за счет роста выработки электроэнергии атомными электростанциями (в основном в европейской части), которая должна возрасти при оптимистическом и благоприятном вариантах развития со 130 млрд. кВт х ч в 2000 году (140 млрд. кВт х ч в 2002 году) до 195 млрд. кВт х ч в 2010 году и до 300 млрд. кВт х ч в 2020 году. Кроме того, предусматривается развитие производства тепловой энергии от атомных энергоисточников до 30 млн. Гкал/год. При умеренном варианте развития экономики производство электроэнергии на атомных станциях уменьшается до 230 млрд. кВт х ч в 2020 году. Возможность дополнительного увеличения производства электроэнергии на атомных станциях до 270 млрд. кВт х ч связана с созданием энергокомплексов "атомные электростанции - гидроаккумулирующие электростанции" и увеличением объемов производства тепловой энергии в районах размещения действующих и новых атомных электростанций.
В результате производство электроэнергии на атомных станциях возрастет с 16 процентов в 2000 году до 23 процентов в 2020 году (в европейской части - до 32 процентов).
Для достижения указанных показателей потребуется увеличить мощность атомных станций и производство энергии практически в 2 раза (темп создания новых мощностей - до 2 ГВт в год).
На действующих атомных электростанциях предусмотрено дальнейшее повышение их эксплуатационной безопасности, в том числе за счет модернизации и продления срока эксплуатации энергоблоков (на 10 - 20 лет) с последующим замещением новыми, в основном на существующих или подготовленных площадках.
Планируемый объем развития мощностей электроэнергетики с увеличением доли базовой мощности атомных электростанций в европейской части России требует оптимизации системы и режимов использования источников генерации в переменной части графиков электрических нагрузок и в осенне-зимний период.
Для этого предусматривается также развитие электросетевого хозяйства, создание необходимых мощностей гидроаккумулирующих электростанций, освоение новых топливных сборок и модернизация систем автоматического регулирования на атомных электростанциях для дальнейшего расширения допустимого диапазона системного регулирования нагрузок без снижения надежности и безопасности эксплуатации.
Главными задачами в развитии атомной энергетики являются повышение ее эффективности и конкурентоспособности, снижение уровня удельных затрат на воспроизводство и развитие мощностей при обеспечении соответствия уровня безопасности современным нормам и правилам.
Атомные электростанции, являющиеся государственной собственностью и объединенные в государственную генерирующую компанию, осуществляют полноправное участие на формируемом конкурентном рынке электроэнергии.
Указанные параметры развития атомной энергетики определяют сдержанный рост тарифов на производство энергии от 1,4 цента за 1 кВт х ч в 2003 году до 2,4 цента за 1 кВт х ч в 2015 году, обеспечивая тарифное преимущество перед электростанциями на органическом топливе.
Отличительными особенностями отрасли являются:
единый комплекс "топливно-сырьевые ресурсы - производство энергии - обращение с отходами";
отраслевая инвестиционная политика и реализуемые целевые программы, которые обеспечивают устойчивость, обновление и повышение эффективности существующего потенциала и развитие ядерно-топливной базы и мощностей по переработке и утилизации радиоактивных отходов;
готовность к реализации высокотехнологичных и экономически выгодных проектов энергетических комплексов, соответствующих современному уровню безопасности и надежности, в том числе инновационных технологий;
возможность освоения рынка тепловой энергии для социальной сферы с замещением неэкономичных источников теплопроизводства;
наличие отечественного энергомашиностроительного производства и строительно-монтажного комплекса.
Важной составляющей государственной стратегии развития промышленности ядерно-топливного цикла и атомной энергетики является увеличение экспортного потенциала ядерных технологий России: развитие экспорта атомных электростанций, ядерного топлива и электроэнергии.
Разведанные и потенциальные запасы природного урана, накопленные резервы регенерированного урана и существующие мощности ядерного топливного цикла при экономически обоснованной инвестиционной и экспортно-импортной политике обеспечивают прогнозируемые параметры развития атомной энергетики. Долгосрочная отраслевая технологическая политика предусматривает постепенный ввод новой ядерной энерготехнологии на быстрых реакторах с замыканием ядерного топливного цикла с уранплутониевым топливом, что снимет ограничения в отношении топливного сырья.
Намечаемые уровни развития атомной энергетики и предприятий ядерно-топливного цикла потребуют значительного роста инвестиций. Основным источником капитальных вложений для отрасли останутся собственные средства предприятий, полученные за счет инвестиционной составляющей в тарифах, средства государственного бюджета, инвестиционных и финансовых структур, а также средства, привлеченные на условиях проектного финансирования при государственных гарантиях.