
- •Введение Важнейшие проблемы народного хозяйства России
- •Улучшение качественных характеристик
- •Снижение себестоимости производимой промышленной продукции
- •3. Расширение масштабов технического перевооружения промышленных предприятий
- •Тема 1. Системный подход в управлении промышленными технологиями и инновациями
- •Конкурентные преимущества российской экономики.
- •Роль технологии и технологической инфраструктуры в современной экономике. Наукоемкая продукция и макротехнологии. Пути интеграции в мировой рынок наукоемкой продукции.
- •1.2. Промышленные технологии и технический прогресс
- •Физический эффект и его модель
- •Основные закономерности проявления физических эффектов
- •Модель физического эффекта
- •1.3. Конкурентоспособность промышленной продукции и пути ее достижения Потребительские свойства и цена продукции
- •Классификация технологий: по функциональному составу – технологии заготовительного, основного и вспомогательного производства
- •Классификация технологий по отраслям народного хозяйства
- •Тема 2. Конструкторская и технологическая подготовка производства
- •1. Конструкторская подготовка производства на основе cad/cam систем: классификация сапр, технические возможности, критерии выбора
- •2. Технологическая подготовка производства на основе cad/cam систем: классификация сапр, технические возможности, критерии выбора
- •Создание системы pdm на предприятии:
- •Тема 3. Промышленные технологии в машиностроении
- •3.1. Технологии переработки сырья и производство промышленных материалов Виды природных ресурсов, их запасы
- •Топливно-энергетическое сырье
- •Металлы
- •Понятие промышленных материалов
- •Стали, классификация сталей, свойства сталей
- •Маркировка стали:
- •Чугуны, классификация чугунов, свойства
- •Цветные сплавы, область применения и свойства
- •Методы и средства определения физико-механических характеристик сталей и сплавов
- •Методика выбора материала
- •Пластмассы: типы, состав, методы получения
- •Керамика, основные виды и область применения
- •Технические керамики
- •Огнеупоры
- •Применение алюминиевых керамик
- •Особенности промышленных технологий металлургического комплекса Доменное производство
- •Продукты доменной плавки
- •Производство стали Сущность процесса
- •Способы выплавки стали
- •Производство стали в электропечах
- •Дуговая плавильная печь.
- •Индукционные тигельные плавильные печи
- •Разливка стали
- •Способы повышения качества стали
- •Прокат и его производство
- •Способы прокатки
- •Технологический процесс прокатки
- •Основы порошковой металлургии
- •1. Основные свойства и классификация металлокерамических материалов
- •2. Получение металлических порошков
- •3. Получение неметаллических порошков
- •4. Формообразование заготовок и изделий из порошков
- •Проблема переработки промышленных отходов, рециклинг
- •3.2. Технологии механической, электро-физической, электро-химической и др. Видов обработки в машиностроении Машина – как объект производства. Классификация машин
- •Качество машин
- •Изделие и его элементы
- •Производственный процесс изготовления машины
- •Технологический процесс, классификация технологических процессов по ес тпп
- •Технологическая операция. Структура технологической операции
- •Заготовительное производство. Основные технологии получения заготовок: литье, ковка, штамповка Способы изготовления заготовок Выбор метода и способа получения заготовки
- •Общие принципы выбора заготовки
- •Способы изготовления отливок Изготовление отливок в песчаных формах
- •Литье в оболочковые формы
- •Литье по выплавляемым моделям
- •Литье в металлические формы
- •Изготовление отливок центробежным литьем
- •Литье под давлением
- •Изготовление отливок электрошлаковым литьем
- •Изготовление отливок непрерывным литьем
- •Способы обработки металлов давлением
- •Классификация процессов обработки давлением
- •Операции ковки
- •Предварительные операции
- •Основные операции
- •Горячая объемная штамповка
- •Формообразование при горячей объемной штамповке
- •Механическая обработка металлов и сплавов
- •Движения для осуществления процесса резания и схема обработки
- •Режим резания и геометрия срезаемого слоя
- •Инструмент для формообразования поверхностей деталей машин
- •Влияние углов резца на процесс резания
- •Физические закономерности (явления) процесса резания
- •1) Стружкообразование и виды стружек.
- •2) Усадка стружки
- •3) Силы резания
- •4) Наростообразование
- •5) Наклеп (упрочнение)
- •6) Тепловыделения в зоне резания
- •7) Трение, износ и стойкость инструмента
- •8) Вибрации при резании металлов
- •9. Точность и качество обработанной поверхности.
- •10. Производительность и выбор режима резания
- •11. Инструментальные материалы
- •Рассмотрим каждую группу материалов подробнее.
- •Металлорежущие станки
- •Классификатор металлорежущих станков ( по энимс)
- •Обработка заготовок на токарных станках
- •1. Типы станков токарной группы
- •Карусельные станки
- •Револьверные станки
- •Токарные автоматы и полуавтоматы
- •1.Станина. 2. Коробка подач. 3. Передняя бабка.
- •3. Типы токарных резцов
- •4. Принадлежности к токарным станкам
- •5. Способы закрепления заготовок
- •6. Работы, выполняемые на токарных станках
- •Обработка заготовок на фрезерных станках
- •1. Особенности процесса фрезерования
- •2. Работы, выполняемые на фрезерных станках.
- •3. Типы фрез.
- •4. Элементы режима резания.
- •5. Машинное время при фрезеровании
- •6. Схемы цилиндрического фрезерования
- •7. Типы фрезерных станков
- •8. Принадлежности к фрезерным станкам
- •9. Делительные головки
- •Обработка на сверлильных и расточных станках
- •1. Работы, выполняемые на сверлильных станках
- •2. Конструкции и геометрия осевых инструментов
- •1) Сверла
- •2) Зенкеры
- •3) Развертки.
- •3. Элементы режима резания
- •4. Типы сверлильных расточных станков
- •Обработка на строгальных, долбежных и протяжных станках
- •1. Особенности процессов строгания, долбления и протягивания
- •2. Строгание и долбление
- •2) Элементы режима резания
- •3. Протягивание
- •4. Станки строгально-протяжной группы
- •Зубонарезание
- •1. Методы нарезания зубчатых колес.
- •2. Схемы обработки методом копирования
- •1) Схема нарезания дисковой модульной фрезой
- •3) Схема нарезания зубодолбежной головкой
- •3. Схемы обработки зубчатых колес методом обкатки
- •1) Схема нарезания червячной фрезой
- •2) Схема нарезания зубодолбяком
- •3) Схема зубострогания
- •Шлифование
- •1. Особенности процесса шлифования
- •2. Характеристика и маркировка абразивного инструмента
- •1) Абразивные материалы
- •2) Зернистость абразивных материалов
- •3) Связка абразивных инструментов
- •4) Твердость абразивных инструментов
- •5) Структура абразивного инструмента
- •6) Классы точности и неуравновешенности шлифовальных кругов
- •7) Форма и размеры абразивного инструмента
- •8) Маркировка шлифовальных кругов
- •3. Основные схемы шлифования
- •1) Круглое шлифование
- •2) Плоское шлифование
- •3) Профильное шлифование
- •4. Шлифовальные станки
- •Отделочные методы обработки
- •1. Обработка абразивными инструментами
- •2. Методы отделки зубьев зубчатых колес
- •3. Обработка методами пластического деформирования
- •Электрохимические и электрофизические методы размерной обработки
- •1. Электрохимические методы
- •2. Электроэрозионные методы
- •3. Ультразвуковая обработка
- •4. Лучевые методы
- •3.3. Автоматизация технологических процессов и производств термины и определения гибких производственных систем
- •Классификация гпс
- •Гибкость гап
- •Cтруктура и уровни асу
- •Основные функции эвм в развитых гибких производствах:
- •Программное управление оборудованием
- •Различают 3 вида dnc - систем
- •Оперативное планирование гпс
- •Тема 4. Промышленные технологии топливно-энергетического комплекса Перспективы развития топливно-энергетического комплекса
- •1. Нефтяной комплекс
- •Нефтедобывающая промышленность
- •Нефтеперерабатывающая промышленность
- •Развитие транспортной инфраструктуры нефтяного комплекса
- •3. Газовая промышленность
- •5. Электроэнергетика
- •6. Атомная энергетика и ядерно-топливный цикл
- •7. Возобновляемые источники энергии и местные виды топлива
- •Тема 5. Наукоемкие промышленные технологии Нанотехнологии
- •История развития нанотехнологии.
- •Основные достижения нанотехнологии.
- •2. Наночастицы
- •3. Новейшие достижения
- •3. Промышленность и сельское хозяйство. Экология.
- •4. Освоение космоса. Информационные и военные технологии.
- •Тема 6. Основы проектирования и управления производственными системами
- •1.1. Организационные технологии проектирования производственных систем
- •Формы проектирования в зависимости от типа производства
- •Методы организационного проектирования производственной системы (пс)
- •Характеристика типов производства
- •Характеристики различных типов производства
Металлы
К важнейшим металлическим рудам относятся руды железа марганца, меди, алюминия, свинца и цинка, олова, вольфрама и др.
Железные руды - общие мировые запасы по различным оценкам варьируют от 400 млрд. т (World Resources, 1990) до 800 млрд. т (В. И. Смирнов, 1986), из которых разведанные запасы составляют 230 млрд. т . Мировая добыча достигла 916 млн. т (1988), но предполагают, что к 2000 г. она удвоится. Кратность запасов к добыче равна 224. Железо (после алюминия)-самый распространенный элемент земной коры, но крупные промышленные концентрации встречаются редко: на полуострове Лабрадор (Канада), около оз. Верхнего США и Канада), в штате Минас-Жерайс (Бразилия), в Западной Австралии, в КМА (Россия) и в Кривом Роге (Украина), в штатах Бихар и Орисса в Индии и др.
Марганцевые руды широко используются для производства стали. Общие запасы марганцевых руд оцениваются в 4,9 млрд. т; они связаны преимущественно с горными породами докембрийского возраста. Наиболее крупными ресурсами располагают ЮАР, Украина, Габон, Австралия, Бразилия. Современная добыча достигает 22 млн. т. Огромные запасы марганцевых руд сконцентрированы в железомарганцевых конкрециях, с содержанием марганца до 25-30%, Fe- 10-12%, устилающих на обширных пространствах дно Мирового океана, Их количество, по приближенным расчетам, превышает 2.5х10' т, что в сотни раз больше общих запасов этого сырья на суше. Опытная добыча ведется в США, Германии и Японии.
Руды цветных металлов находят широкое применение в разнообразных отраслях промышленности - электронике, радио- и электропромышленности, космической и атомной технике, ракета- н самолетостроении и многих других. Их мировая добыча и потребление за последние 25 лет возросли в несколько раз. Общие запасы бокситов (сырье для производства алюминия) составляют 232 млрд. т, а извлекаемые - 28 млрд. т. Наиболее крупные и качественные залежи сосредоточены в Гвинее, Австралии, Камеруне, Бразилии, Индии, Ямайке. Руды тропиков возникли в палеогене и имеют осадочное происхождение. Всего разработка бокситов ведется в 22 странах мира (в основном в тропиках) и
достигла в 1986 г. 97млн. т. Медь добывается очень давно (с конца IV тысячелетия до н.э.), имеет широкое применение, но ее руды отличаются крайне низкой концентрацией: жилы с содержанием меди 2-3% считаются богатыми, и разрабатываются руды даже при содержании Cu до 0,5%. Общие запасы медных руд, по разным оценкам варьируют от 570 до 1 625 млн. т, а разведанные извлекаемые - 590 млн. т. Добыча превосходит 8,4 млн. т в год (1986). Основная часть запасов принадлежит США (90 млн. т), Чили (120млн.т), странам СНГ (54млн.т), Австралии, Замбии, Заиру, Перу. Предполагают, что к 2000 г. из недр будет извлечено около 275 млн. т, т. е. около 70%, современного медно-рудного потенциала. Свинец и цинк используются с VI-VII тысячелетия до н.э. В зарубежных странах общие запасы свинцовых руд оцениваются в 125 млн. т, а цинковых -95 млн. т. В 1986 г. добыча этих руд поднялась до 3,4 млн. т. свинца и 7,0 млн. т цинка. Обычно свинец и цинк встречаются в рудах совместно с другими элементами (золотом, медью, серебром), образуя полиметаллические руды; реже встречаются самостоятельные месторождения. Наиболее крупными запасами свинцово-цинковых руд обладают США, Канада Австралия; остальные материки и страны существенно уступают в этом отношении. Олово известно с начала бронзового века; его содержание в земной коре крайне незначительно - руды с концентрацией Sn в 1% считаются богатыми. Общие мировые ресурсы оцениваются в 7,4-6,8 млн. т, а извлекаемые - в 4,2 млн. т; добыча достигает 200 тыс. т. Основная часть оловосодержащих руд возникла в мезозойскую и альпийскую эпохи. Наиболее крупные месторождения находятся в Бразилии (650 тыс. т), в Боливии (140 тыс. т; здесь открыта уникальная жила, протяженностью в 2 км), в оловяно-вольфрамовой провинции Юго-Восточной Азии (Малайзия, Индонезия, Китай), вмещающей свыше половины общих и разведанных запасов олова зарубежных стран. Олово-дефицитный металл спрос на него растет. По прогнозам к 2000 г. известные запасы иссякнут, и в обработку поступят хвосты обогатительных фабрик.
Вольфрам, так же как и олово, в сочетании с которым он часто встречается, образует очень низкие концентрации. Руды с содержанием Wo 1% считаются богатыми. Преобладающая часть разведанных запасов находится в 5 странах - Южной Корее, Канаде, США, Турции и Австралии; в основном руды Wo образовались в мезозойскую и альпийскую эпохи. По прогнозам общие запасы вольфрама будут исчерпаны уже к 2000 г., и надежд на новые крупные приращения этого сырья мало.
Благородные металлы - золото, серебро, платина и металлы ее группы. Золото - первый металл, известный человеку; золотые изделия начали получать еще 4-5 тыс. лет до н. э. В настоящее время в сейфах банков накоплено около 40 тыс. т золота. К концу XX в. всего будет добыто 110 тыс. т, хотя ежегодно добывается. 800-1200 т Au. Золотоносные руды образовывались в ранние эпохи: например, в архейскую - золоторудные месторождения зеленокаменных поясов Канады, Индии, Австралии, в протерозойскую -уникальные золотоносные конгломераты Витватерсранда (ЮАР) с запасами 25 тыс. т (75% мировой добычи).