
- •Содержание учебно-методического комплекса дисциплины
- •Типовая учебная программа дисциплины –
- •Выписка из рабочих учебных планов
- •1. Общие сведения
- •1.1. Цель и задачи курса:
- •2. Организация и планирование курса
- •2.1 Курс лекционных занятий
- •2.2 Курс лабораторных занятий
- •2.3 Самостоятельная работа обучающегося под руководством преподавателя (сроп)
- •2.4Самостоятельная работа студента (срс)
- •3. Расписание модульно-рейтинговой проверки знаний обучающихся (график выполнения и сдачи заданий по дисциплине)
- •3. Карта учебно-методической обеспеченности дисциплины
- •3.1. Список литературы
- •3.2 Методическое обеспечение дисциплины
- •3.3 Перечень специализированных средств
- •4. Методические рекомендации по дисциплин
- •5. Лекционный комплекс.
- •Тема 1. «Сведения из теории вероятностей и математической статистики».
- •Вопрос 1. Введение в эконометрику.
- •Вопрос 2. Особенности статистических данных. Источники информации.
- •Вопрос 3. Выборка и генеральная совокупность.
- •Вопрос 4. Проверка (тестирование) статистических гипотез.
- •Вопрос 5. Точечные и интервальные оценки параметров.
- •Тема 2. Метод наименьших квадратов
- •Вопрос 1. Функция регрессии и основные задачи статистического анализа парной регрессии. Причины включения случайного члена в уравнение регрессии.
- •Лз 3. Метод наименьших квадратов
- •Лз 4 Метод наименьших квадратов.
- •Вопрос 2. Метод наименьших квадратов.
- •Тема 3. Модель множественной линейной регрессии
- •Вопрос 1. Множественная линейная регрессия.
- •Вопрос 2. Матричная форма записи модели множественной регрессии.
- •Тема 4. Классическая модель множественной линейной регрессии.
- •Вопрос 1. Классическая модель множественной регрессии.
- •Вопрос 2. Проверка статистической значимости коэффициентов линейной регрессии. T-статистика Стьюдента.
- •Лз 7. Классическая модель множественной линейной регрессии.
- •Тема 5. Коэффициент детерминации.
- •Вопрос 1. Коэффициент детерминации.
- •Вопрос 2. Проверка общего качества уравнения регрессии.
- •Вопрос 3. Проверка значимости коэффициента детерминации.
- •Тема 6. Спецификация переменных. Частная корреляция.
- •Вопрос 1. Спецификация переменных.
- •Вопрос 2. Последствия невключения в модель существенных переменных.
- •Вопрос 3. Включение в модель несущественных переменных.
- •Вопрос 4. Частная корреляция в модели множественной линейной регрессии.
- •Тема 7. Нелинейные эконометрические модели.
- •Вопрос 1. Нелинейные модели регрессии. Нелинейность по переменным и нелинейность по параметрам. Логарифмирование.
- •Вопрос 2. Эластичность и ее моделирование.
- •Тема 8. Мультиколлинеарность.
- •Вопрос 1. Явление мультиколлинеарности.
- •Определение наличия мультиколлинеарности.
- •Вопрос 2. Последствия мультиколлинеарности для оценок коэффициентов регрессии.
- •Вопрос 3. Методы устранения мультиколлинеарности
- •Вопрос 4. Фиктивные переменные.
- •Тема 9. Гетероскедастичность.
- •Вопрос 1. Сущность и причины возникновения гетероскедастичности.
- •Вопрос 2. Способы корректировки гетероскедастичности.
- •Тема 10. Динамический ряд.
- •Вопрос 1. Общие сведения о временных рядах и задачах их анализа.
- •Лз 14. Динамический ряд.
- •Вопрос 2. Автокорреляция.
- •Вопрос 3. Прогнозирование на основе моделей временных рядов.
- •Другую группу методов представляют методы статистического моделирования, наиболее распространенными из которых являются статические и динамические.
- •Лз 15 Динамический ряд.
- •Вопрос 3. Прогнозирование на основе моделей временных рядов.
- •Вопрос 4. Система одновременных уравнений.
- •6. План лабораторных занятий
- •7. Материалы для срс срс №1 Основные аспекты эконометрического моделирования
- •Срс №2 Парный регрессионный анализ
- •Срс № 3 Множественный регрессионный анализ
- •Условие задачи
- •Алгоритм решения задания
- •Срс №4 Временные ряды и прогнозирование.
- •Срс №5 Регрессионные динамические модели.
- •3) Произвести теоретическое описание модели с распределенным лагом.
- •Срс № 6
- •Срс № 7 Системы одновременных уравнений.
- •8. Материалы по контролю и оценке учебных достижений обучающихся Вопросы для подготовки к экзамену по дисциплине
Определение наличия мультиколлинеарности.
Существует несколько признаков, по которым может быть установлено наличие мультиколлинеарности.
1. Совокупный коэффициент множественной детерминации (R2)достаточно высок, но некоторые из коэффициентов регрессии статистически незначимы, то есть они имеют низкиеt-статистики.
2. Парная корреляция между малозначимыми объясняющими переменными достаточно высока (в случае двух объясняющих переменных).
3. Высокие частные коэффициенты корреляции (в случае большего количества малозначимых объясняющих переменных).
Вопрос 2. Последствия мультиколлинеарности для оценок коэффициентов регрессии.
1. Большие дисперсии оценок (стандартные ошибки). Это затрудняет нахождение истинных значений определяемых величин и расширяет интервальные оценки, ухудшая их точность.
2. Уменьшаются t-статистикикоэффициентов, что может привести к неоправданному выводу о существенности влияния соответствующей объясняющей переменной на зависимую.
3. Оценки коэффициентов по МНК и их стандартные ошибки становятся очень чувствительными к малейшим изменениям данных, то есть они становятся неустойчивыми.
4. Затрудняется определение вклада каждой из объясняющих переменных в объясняемую уравнением регрессии дисперсию зависимой переменной.
5. Возможно получение неверного знака у коэффициента регрессии.
Вопрос 3. Методы устранения мультиколлинеарности
Рассмотрим основные методы.
1. Исключение переменной(ых) из модели. Простейшим методом устранения мультиколлинеарности является исключение из модели одной или ряда коррелированных переменных.
Однако в этой ситуации возможны ошибки спецификации. Например, при исследовании спроса на некоторое благо в качестве объясняющих переменных можно использовать цену данного блага и цены заменителей данного блага, которые зачастую коррелируют друг с другом.
Исключив из модели цены заменителей, скорее всего, будет допущена ошибка спецификации. Вследствие этого можно получить смещенные оценки и сделать необоснованные выводы. Поэтому в прикладных эконометрических моделях желательно не исключать объясняющие переменные до тех пор, пока коллинеарность не станет серьезной проблемой.
2. Получение дополнительных данных или новой выборки. Поскольку мультиколлинеарность напрямую зависит от выборки, то, возможно, при другой выборке мультиколлинеарности не будет, либо она не будет столь серьезной.
Иногда для уменьшения мультиколлинеарности достаточно увеличить объем выборки. Увеличение количества данных сокращает дисперсии коэффициентов регрессии и, тем самым, увеличивает их статистическую значимость.
Однако получение новой выборки или расширение старой не всегда возможно или связано с серьезными издержками.
3. Изменение спецификации модели. В ряде случаев проблема мультиколлинеарности может быть решена путем изменения спецификации модели: либо изменяется форма модели, либо добавляются объясняющие переменные, не учтенные в первоначальной модели, но существенно влияющие на зависимую переменную.
Если данный метод имеет основания, то его использование уменьшает сумму квадратов отклонений, тем самым, сокращая стандартную ошибку регрессии. Это приводит к уменьшению стандартных ошибок коэффициентов.
4. Использование предварительной информации о некоторых параметрах. Иногда при построении модели множественной регрессии можно воспользоваться предварительной информацией, в частности известными значениями некоторых коэффициентов регрессии. Вполне вероятно, что значения коэффициентов, рассчитанные для каких-либо предварительных (обычно более простых) моделей либо для аналогичной модели по ранее полученной выборке, могут быть использованы для разрабатываемой в данный момент модели.
Ограниченность использования данного метода обусловлена тем, что, во-первых, получение предварительной информации зачастую затруднительно, а, во-вторых, вероятность того, что выделенный коэффициент регрессии будет одним и тем же для различных моделей, невысока.
Преобразование переменных. В ряде случаев минимизировать либо вообще устранить проблему мультиколлинеарности можно с помощью преобразования переменных.
Например, пусть эмпирическое уравнение регрессии имеет следующий вид:
(1)
При этом х1 и х2 – это коррелированные переменные.
В этой ситуации можно попытаться определять следующие регрессионные зависимости относительных величин:
(2)
(3)
Вполне вероятно, что в этих моделях проблема мультиколлинеарности будет отсутствовать. Возможны и другие преобразования, близкие по своей сути к описанным выше. Например, если в уравнении рассматриваются взаимосвязи номинальных экономических показателей, то для снижения мультиколлинеарности можно попытаться перейти к реальным показателям и т.п.