
- •Содержание учебно-методического комплекса дисциплины
- •Типовая учебная программа дисциплины –
- •Выписка из рабочих учебных планов
- •1. Общие сведения
- •1.1. Цель и задачи курса:
- •2. Организация и планирование курса
- •2.1 Курс лекционных занятий
- •2.2 Курс лабораторных занятий
- •2.3 Самостоятельная работа обучающегося под руководством преподавателя (сроп)
- •2.4Самостоятельная работа студента (срс)
- •3. Расписание модульно-рейтинговой проверки знаний обучающихся (график выполнения и сдачи заданий по дисциплине)
- •3. Карта учебно-методической обеспеченности дисциплины
- •3.1. Список литературы
- •3.2 Методическое обеспечение дисциплины
- •3.3 Перечень специализированных средств
- •4. Методические рекомендации по дисциплин
- •5. Лекционный комплекс.
- •Тема 1. «Сведения из теории вероятностей и математической статистики».
- •Вопрос 1. Введение в эконометрику.
- •Вопрос 2. Особенности статистических данных. Источники информации.
- •Вопрос 3. Выборка и генеральная совокупность.
- •Вопрос 4. Проверка (тестирование) статистических гипотез.
- •Вопрос 5. Точечные и интервальные оценки параметров.
- •Тема 2. Метод наименьших квадратов
- •Вопрос 1. Функция регрессии и основные задачи статистического анализа парной регрессии. Причины включения случайного члена в уравнение регрессии.
- •Лз 3. Метод наименьших квадратов
- •Лз 4 Метод наименьших квадратов.
- •Вопрос 2. Метод наименьших квадратов.
- •Тема 3. Модель множественной линейной регрессии
- •Вопрос 1. Множественная линейная регрессия.
- •Вопрос 2. Матричная форма записи модели множественной регрессии.
- •Тема 4. Классическая модель множественной линейной регрессии.
- •Вопрос 1. Классическая модель множественной регрессии.
- •Вопрос 2. Проверка статистической значимости коэффициентов линейной регрессии. T-статистика Стьюдента.
- •Лз 7. Классическая модель множественной линейной регрессии.
- •Тема 5. Коэффициент детерминации.
- •Вопрос 1. Коэффициент детерминации.
- •Вопрос 2. Проверка общего качества уравнения регрессии.
- •Вопрос 3. Проверка значимости коэффициента детерминации.
- •Тема 6. Спецификация переменных. Частная корреляция.
- •Вопрос 1. Спецификация переменных.
- •Вопрос 2. Последствия невключения в модель существенных переменных.
- •Вопрос 3. Включение в модель несущественных переменных.
- •Вопрос 4. Частная корреляция в модели множественной линейной регрессии.
- •Тема 7. Нелинейные эконометрические модели.
- •Вопрос 1. Нелинейные модели регрессии. Нелинейность по переменным и нелинейность по параметрам. Логарифмирование.
- •Вопрос 2. Эластичность и ее моделирование.
- •Тема 8. Мультиколлинеарность.
- •Вопрос 1. Явление мультиколлинеарности.
- •Определение наличия мультиколлинеарности.
- •Вопрос 2. Последствия мультиколлинеарности для оценок коэффициентов регрессии.
- •Вопрос 3. Методы устранения мультиколлинеарности
- •Вопрос 4. Фиктивные переменные.
- •Тема 9. Гетероскедастичность.
- •Вопрос 1. Сущность и причины возникновения гетероскедастичности.
- •Вопрос 2. Способы корректировки гетероскедастичности.
- •Тема 10. Динамический ряд.
- •Вопрос 1. Общие сведения о временных рядах и задачах их анализа.
- •Лз 14. Динамический ряд.
- •Вопрос 2. Автокорреляция.
- •Вопрос 3. Прогнозирование на основе моделей временных рядов.
- •Другую группу методов представляют методы статистического моделирования, наиболее распространенными из которых являются статические и динамические.
- •Лз 15 Динамический ряд.
- •Вопрос 3. Прогнозирование на основе моделей временных рядов.
- •Вопрос 4. Система одновременных уравнений.
- •6. План лабораторных занятий
- •7. Материалы для срс срс №1 Основные аспекты эконометрического моделирования
- •Срс №2 Парный регрессионный анализ
- •Срс № 3 Множественный регрессионный анализ
- •Условие задачи
- •Алгоритм решения задания
- •Срс №4 Временные ряды и прогнозирование.
- •Срс №5 Регрессионные динамические модели.
- •3) Произвести теоретическое описание модели с распределенным лагом.
- •Срс № 6
- •Срс № 7 Системы одновременных уравнений.
- •8. Материалы по контролю и оценке учебных достижений обучающихся Вопросы для подготовки к экзамену по дисциплине
Тема 5. Коэффициент детерминации.
Список рекомендуемой литературы:
1. Айвазян С.А., Мхитарян B.C. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998. – 320с.
2. Мухамедиев Б.М. Эконометрика и эконометрическое прогнозирование. – Алматы: Қазақ университеті. 2007. – 250с.
3. Эконометрика. Под ред. Елисеевой И.И. – М.: Финансы и статистика, 2005.
ЛЗ 8
План
1. Коэффициент детерминации.
2. Проверка общего качества уравнения регрессии.
3. Проверка значимости коэффициента детерминации.
Вопрос 1. Коэффициент детерминации.
Совокупным коэффициентом множественной детерминации называется величинаR2, которая показывает, какая доля вариации изучаемого показателя объясняется влиянием факторов, включенных в уравнение множественной регрессии. Значение совокупного коэффициента множественной детерминации находится в пределах от 0 до 1. Поэтому, чем ближеR2 к единице, тем вариация изучаемого показателя в большей мере характеризуется влиянием отобранных факторов.
Вопрос 2. Проверка общего качества уравнения регрессии.
Проверка общего качества уравнения регрессии осуществляется с помощью дисперсионного F-критерияФишера.
Проверку значимости уравнения регрессии производят на основе вычисленияF-критерияФишера:
(1)
где m– число параметров в уравнении регрессии;п– объем выборки;σост.– среднее квадратическое отклонение результативного признакауот выровненных значенийŷ.
(2)
(3)
Полученное значение критерия Fрасч.сравнивают с критическим для принятого уровня значимости0,05или0,01и чисел степеней свободыv1 = m-1, v2 = n-m. Если оно окажется больше соответствующего табличного значения, то данное уравнение регрессии статистически значимо, то есть доля вариации, обусловленная регрессией, намного превышает случайную ошибку.
Считается, что уравнение регрессии пригодно для практического использования, если Fрасч. > Fтабл.не менее, чем в четыре раза.
Вопрос 3. Проверка значимости коэффициента детерминации.
Проверку адекватности уравнения регрессии можно также провести на основе расчета существенности совокупного коэффициента корреляции, сравнив его затем с критической величиной, взятой из таблицы Стьюдента. При этом используется следующая формула:
(4)
Значение
берется по модулю. Если табличное
значениеt-критерияпри5%-омуровне значимости меньше
полученного в ходе эксперимента, то
построенную модель признают пригодной
для практического применения.
В свою очередь, если результаты проверки адекватности привели к отрицательным результатам, то в этом случае в исследовании, скорее всего, были либо неверно определены факторы, оказывающие влияние на исследуемый процесс, либо неправильно выбрана сама модель исследования.
А если результаты проверки адекватности привели к положительным результатам, то далее следует проверить эффективность ее применения на малой выборке, и, в случае получения положительных результатов, распространить на всю генеральную совокупность.
Тема 6. Спецификация переменных. Частная корреляция.
Список рекомендуемой литературы:
1. Айвазян С.А., Мхитарян B.C. Прикладная статистика и основы эконометрики. – М.: ЮНИТИ, 1998. – 320с.
2. Мухамедиев Б.М. Эконометрика и эконометрическое прогнозирование. – Алматы: Қазақ университеті. 2007. – 250с.
3. Эконометрика. Под ред. Елисеевой И.И. – М.: Финансы и статистика, 2005.
ЛЗ 9
План
1. Спецификация переменных.
2. Последствия невключения в модель существенных переменных.
3. Включение в модель несущественных переменных.
4. Частная корреляция в модели множественной линейной регрессии.