
- •Министерство образования и науки, молодёжи и спорта украины
- •Одесский национальный политехнический университет
- •Институт компьютерных систем
- •Кафедра информационных систем
- •Министерство образования и науки, молодёжи и спорта украины
- •Одесский национальный политехнический университет
- •Институт компьютерных систем
- •Кафедра информационных систем
- •Содержание
- •Тема1. Формы представления информации 10
- •Тема 2. Логические основы построения элементов 16
- •Тема 3. Схемотехника комбинационных узлов 29
- •Тема 4. Схемотехника цифровых элементов 70
- •Тема 5. Схемотехника цифровых узлов 108
- •Тема 6. Интегрированные системы элементов 138
- •Тема 7. Схемотехника аналоговых узлов 179
- •Тема 8. Схемотехника обслуживающих элементов 208
- •Тема 14. Структуры микропроцессорных систем 293
- •Тема 15. Схемы поддержки мп на системных платах 340
- •Тема 16. Некоторые вопросы развития архитектуры эвм 357
- •Тема 17. Risk – процессоры 387
- •Тема 18. Суперкомпьютеры. Параллельные вычислительные системы 399
- •Список литературы 450 Тема1. Формы представления информации Лекция 1. Основные понятия
- •Тема 2. Логические основы построения элементов Лекция 2.
- •2.1. Основные понятия, определения и законы Булевой алгебры
- •Формы задания Булевой функции
- •2.2. Простейшие модели логических элементов и система их параметров
- •2.3. Типы выходных каскадов цифровых элементов
- •2.4. Системы (серии) логических элементов и их основные характеристики
- •2.5 Контрольные вопросы
- •Тема 3. Схемотехника комбинационных узлов Лекция 3
- •3.1 Общие сведения
- •3.2. Шифраторы, дешифраторы и преобразователи кодов: назначения, виды, функционирование, принципы построения
- •3.3. Синтез кс на основе дешифраторов
- •3.4. Мультиплексоры и демультиплексоры
- •3.5. Шинные формирователи
- •3.6 Синтез кс на основе мультиплексоров
- •3.7. Компараторы
- •3.8 Сумматоры
- •3.9. Арифметико-логические устройства
- •3.10. Матричные умножители
- •3.11 Постановка и методы решения задач синтеза комбинационных узлов
- •3.11.1 Синтез комбинационных узлов
- •3.11.2 Основные факторы, которые должны быть учтены при построении принципиальных схем
- •3.11.2.1 Питающие напряжения ис
- •3.11.2.2 Уровни логических сигналов
- •3.11.2.3 Нагрузочная способность
- •3.11.2.4 Коэффициент объединения по входу
- •3.11.2.5 Быстродействие
- •3.11.2.6 Помехоустойчивость
- •3.11.2.7 Рассеиваемая мощность
- •3.11.2.8. Использование элементов, имеющих выходы с третьим состоянием или с открытым коллектором
- •3.12 Критерии оценки качества технической реализации кс
- •3.13 Контрольные вопросы
- •Тема 4. Схемотехника цифровых элементов Лекция 4
- •4.1 Последовательностные цифровые схемы
- •4.2. Схемотехника триггерных устройств
- •4.3. Асинхронные триггеры
- •4.4. Синхронные триггеры
- •Rs триггер с синхронизацией по уровню
- •Синхронный rs триггер с синхронизацией по фронту
- •4.5 Методы построения триггеров одного типа на базе триггеров другого типа
- •Проектирование триггеров на основе rs-триггера
- •Метод преобразования характеристических уравнений
- •Метод сравнения характеристических уравнений
- •Использование jk-триггера
- •4.6 Регистры и регистровые файлы
- •4.6.1 Регистры памяти
- •4.6.2 Сдвигающие регистры
- •4.6.3 Универсальные регистры
- •4.7 Счётчики
- •4.7.1 Счетчики с непосредственными связями и последовательным переносом
- •4.7.2 Счетчики с параллельным переносом
- •4.7.3 Реверсивный счетчик с последовательным переносом
- •4.7.4 Двоично-кодированные счётчики с произвольным модулем
- •Построение счетчика методом модификации межразрядных связей
- •Построение счетчика методом управления сбросом
- •4.8 Распределители тактов
- •4.8.1 Распределители импульсов и распределители уровней
- •4.8.2 Кольцевой регистр сдвига
- •4.8.3 Счётчик Джонсона
- •4.9 Контрольные вопросы
- •Тема 5. Схемотехника цифровых узлов Лекция 5
- •5.1 Цифровые автоматы и их разновидности
- •5.2 Абстрактный и структурный автоматы
- •5.3. Способы описания и задания автоматов
- •5.4. Связь между моделями Мура и Мили
- •5.5. Минимизация числа внутренних состояний полностью определенных автоматов
- •5.6. Принцип микропрограммного управления. Понятия об операционном и управляющем автоматах
- •Операционные элементы
- •5.7. Граф - схемы алгоритмов (гса) и их разновидности. Способы задания гса, требования к ним
- •5.8. Абстрактный синтез микропрограммных управляющих автоматов Мили и Мура
- •5.8.1. Синтез автомата Мили
- •5.8.2. Синтез автомата Мура
- •5.9. Структурный синтез микропрограммных управляющих автоматов Мили и Мура
- •5.9.1. Структурный синтез автомата Мили
- •5.9.2. Структурный синтез автомата Мура
- •5.10. Синтез автомата Мура на базе регистра сдвига
- •5.11. Контрольные вопросы
- •Тема 6. Интегрированные системы элементов Лекция 6. Программируемые логические устройства
- •6.1 Основные физические принципы программирования плм и плис
- •6.1.1 Метод плавких перемычек
- •6.1.2 Метод наращиваемых перемычек
- •6.1.3 Устройства, программируемые фотошаблоном
- •6.1.4 Стираемые программируемые постоянные запоминающие устройства
- •6.1.5. Электрически стираемые программируемые постоянные запоминающие устройства
- •6.1.6. Flash - технология
- •6.1.7. Статическое оперативное запоминающее устройство
- •6.1.8. Сравнительная таблица технологий программирования
- •6.2 Простые и сложные плу
- •6.2.1 Ппзу
- •6.2.2 Программируемые логические матрицы
- •6.2.3. Программируемые матрицы pal и gal
- •6.2.4 Дополнительные программируемые опции
- •6.2.5 Сложные плу
- •6.3. Контрольные вопросы
- •Лекция 7. Программируемые логические интегральные схемы
- •7.1 Мелко-, средне- и крупномодульные архитектуры
- •7.2 Логические блоки на мультиплексорах и таблицах соответствия
- •7.3 Таблицы соответствия, распределённое озу, сдвиговые регистры
- •7.4 Конфигурируемые логические блоки, блоки логических символов, секции
- •7.5 Секции и логические ячейки
- •7.6 Конфигурируемые логические блоки clb и блоки логических массивов lab
- •7.7. Контрольные вопросы
- •Лекция 8
- •8.1 Дополнительные встроенные функции
- •8.1.1 Схемы ускоренного переноса
- •8.1.2 Встроенные блоки озу
- •8.1.3 Встроенные умножители, сумматоры и блоки умножения с накоплением
- •8.1.4 Аппаратные и программные встроенные микропроцессорные ядра
- •8.2 Дерево синхронизации и диспетчеры синхронизации
- •8.2.1 Дерево синхронизации
- •8.2.2 Диспетчер синхронизации
- •8.3. Системы с перестраиваемой архитектурой
- •8.4. Программируемый пользователем массив узлов
- •8.4.1. Технология picoArray компании picoChip
- •8.4.2 Технология адаптивных вычислительных машин компании QuickSilver
- •8.5. Контрольные вопросы
- •Тема 7. Схемотехника аналоговых узлов Лекция 9. Операционные усилители
- •9.1. Идеальный операционный усилитель
- •9.2. Основные схемы включения операционного усилителя
- •9.2.1. Дифференциальное включение
- •9.2.2. Инвертирующее включение
- •9.2.3 Неинвертирующее включение
- •9.3 Функциональные устройства на операционных усилителях
- •9.3.1 Схема масштабирования
- •9.3.2 Схема суммирования
- •9.3.3 Схема интегрирования
- •9.3.4 Схема дифференцирования
- •9.3.5 Источники напряжения, управляемые током
- •9.3.6 Источники тока, управляемые напряжением
- •9.4 Активные электрические фильтры на оу
- •9.5 Схемы нелинейного преобразования на оу
- •9.6 Генераторы сигналов на оу
- •9.7. Контрольные вопросы
- •Лекция 10
- •10.1. Изолирующие усилители
- •10.2. Аналоговые компараторы
- •10.3. Источники опорного напряжения
- •10.4. Аналоговые коммутаторы
- •10.5. Оптореле
- •10.6. Устройства выборки-хранения
- •10.7. Цифроаналоговые преобразователи
- •10.8. Аналого-цифровые преобразователи
- •10.9. Контрольные вопросы
- •Тема 8. Схемотехника обслуживающих элементов Лекция 11
- •11.1 Сопряжение цифровых микросхем, изготовленных по разным технологиям, и сопряжение с интерфейсами
- •11.2 Управление входами ттл и кмоп
- •11.3 Дискретное управление нагрузкой от элементов ттл и кмоп
- •11.4 Передача цифровых сигналов на небольшие расстояния
- •11.5 Контрольные вопросы
- •Тема 9. Источники питания. Схемотехника комбинаторных узлов Лекция 12
- •12.1. Схемотехника линейных стабилизаторов напряжения
- •12.2 Импульсные стабилизаторы напряжения
- •12.3 Инверторные схемы
- •12.4 Контрольные вопросы
- •Тема10. Цифровые компьютеры Лекция 13
- •13.1. Принципы действия цифровых компьютеров
- •13.2. Понятие о системе программного (математического) обеспечения эвм
- •13.3. Большие эвм общего назначения
- •13.3.1. Каналы
- •13.3.2. Интерфейс
- •13.4. Малые эвм
- •13.5. Контрольные вопросы
- •Тема 11. Запоминающие устройства Лекция 14
- •14.1 Структура памяти эвм
- •14.2 Способы организации памяти
- •14.2.1 Адресная память
- •14.2.2 Ассоциативная память
- •14.2.3 Стековая память (магазинная)
- •14.3. Структуры адресных зу
- •14.3.1. Зу типа 2d
- •14.3.2. Зу типа 3d
- •14.3.3. Зу типа 2d-m
- •14.4 Постоянные зу (пзу, ппзу)
- •14.5. Флэш-память
- •14.6. Контрольные вопросы
- •Тема 12. Процессоры Лекция 15
- •15.1 Операционные устройства (алу)
- •15.2 Управляющие устройства
- •15.2.1. Уу с жёсткой логикой
- •15.2.2 Уу с хранимой в памяти логикой
- •15.2.2.1. Выборка и выполнение мк
- •15.2.2.2. Кодирование мк
- •15.2.2.3. Синхронизация мк
- •15.3. Контрольные вопросы
- •Тема 13. Универсальные микропроцессоры Лекция 16. Архитектура процессора кр580вм80
- •16.1. Регистры данных
- •16.2. Арифметико-логическое устройство
- •16.3. Регистр признаков
- •16.4. Блок управления
- •16.5. Буферы
- •16.6. Мп с точки зрения программиста
- •16.7. Форматы данных в кр580вм80
- •16.8. Форматы команд в кр580вм80
- •16.9. Способы адресации
- •16.10. Контрольные вопросы
- •Лекция 17. Система команд кр580вм80
- •17.1. Пересылки однобайтовые
- •17.2. Пересылки двухбайтовые
- •17.3. Операции в аккумуляторе
- •17.4. Операции в рон и памяти
- •17.5. Команды управления
- •17.6. Контрольные вопросы
- •Тема 14. Структуры микропроцессорных систем Лекция 18. Общие принципы
- •18.1. Системный интерфейс микро-эвм. Цикл шины
- •18.2. Промежуточный интерфейс
- •18.3. Принципы организации ввода/вывода информации в микропроцессорную систему
- •18.4. Контрольные вопросы
- •Лекция 19. Принципы организации систем прерывания программ
- •19.1. Характеристики систем прерывания
- •19.2. Возможные структуры систем прерывания
- •19.3. Организация перехода к прерывающей программе
- •19.3.1. Реализация фиксированных приоритетов
- •19.3.2. Реализация программно-управляемых приоритетов
- •19.4. Контрольные вопросы
- •Лекция 20. Принципы организации систем прямого доступа в память
- •20.1. Способы организации доступа к системной магистрали
- •20.2. Возможные структуры систем пдп
- •20.3. Организация обмена в режиме пдп
- •20.3.1. Инициализация средств пдп
- •20.3.2. Радиальная структура ( Slave dma)
- •20.3.3. Радиальная структура (Bus master dma)
- •20.3.4. Цепочечная структура ( Bus master dma)
- •20.3.5. Принципы организации арбитража магистрали
- •20.4. Микропроцессорная система на основе мп кр580вм80а
- •20.5. Контрольные вопросы
- •Тема 15. Схемы поддержки мп на системных платах Лекция 21
- •21.1. Эволюция шинной архитектуры ibm pc
- •21.1.1. Локальная системная шина
- •21.1.2. Шина расширения
- •21.1.2.1. Шина расширения isa
- •21.1.2.2. Шина расширения mca
- •21.1.2.3. Шина расширения eisa
- •21.1.3. Локальные шины расширения
- •21.1.3.1. Локальная шина vesa (vlb)
- •21.1.3.2. Локальная шина pci
- •21.2. Современные схемы поддержки мп на системных платах
- •21.2.1. Чипсет GeForce 9300/9400 фирмы nvidia
- •21.2.3. Чипсет Intel z68 для платформы Socket 1155
- •21.3. Контрольные вопросы
- •Тема 16. Некоторые вопросы развития архитектуры эвм Лекция 22
- •22.1. Теги и дескрипторы. Самоопределяемые данные
- •22.2. Методы оптимизации обмена процессор-память
- •22.2.1. Конвейер команд
- •22.2.2. Расслоение памяти
- •22.2.3. Буферизация памяти
- •22.3. Динамическое распределение памяти. Виртуальная память
- •22.3.1. Виртуальная память
- •22.3.2. Сегментно-страничная организация памяти
- •22.4. Контрольные вопросы
- •Лекция 23. Защита памяти
- •23.1. Защита отдельных ячеек памяти
- •23.2. Метод граничных регистров
- •23.3. Метод ключей защиты
- •23.4. Алгоритмы управления многоуровневой памятью
- •23.5. Контрольные вопросы
- •Тема 17. Risk – процессоры Лекция 24
- •24.1. Общая характеристика risk - процессоров
- •24.2. Arm архитектура
- •24.2.1. Дополнительные технологии
- •24.2.2. Ядро arm7tdmi
- •24.2.3. Семейство arm10 Tumb
- •24.3. Контрольные вопросы
- •Тема 18. Суперкомпьютеры. Параллельные вычислительные системы Лекция 25
- •25.1. Смена приоритетов в области высокопроизводительных вычислений
- •25.2. Сферы применения многоядерных процессоров и многопроцессорных вычислительных систем
- •25.3. Классификация архитектур вычислительных систем по степени параллелизма обработки данных
- •25.4. Архитектуры smp, mpp и numa
- •25.5. Организация когерентности многоуровневой иерархической памяти
- •25.6. Pvp архитектура
- •25.7. Контрольные вопросы
- •Лекция 26. Кластерная архитектура
- •26.1. Архитектура связи в кластерных системах
- •26.2. Коммутаторы для многопроцессорных вычислительных систем.
- •26.2.1. Простые коммутаторы
- •26.2.2. Составные коммутаторы
- •26.2.2.1. Коммутатор Клоза
- •26.3. Контрольные вопросы
- •Лекция 27. Высокопроизводительные многоядерные процессоры для встраиваемых приложений
- •27.1. Процессоры Tile-64/64Pro компании Tilera
- •27.4. Мультипроцессор Cell
- •27.4.1. Общая структура процессора Cell
- •27.4.2. Структура процессорного элемента Power (ppe)
- •27.4.3. Структура spe — "синергичного" процессорного элемента
- •27.5. Альтернативная технология построения многоядерных систем на кристалле — atac
- •27.5.1. Основные идеи архитектуры atac
- •27.5.2. Ключевые элементы технологии атас
- •27.5.3. Структура межъядерных связей
- •27.5.4. Передача данных и согласование кэш-памяти
- •27.6. Контрольные вопросы
- •Список литературы
8.3. Системы с перестраиваемой архитектурой
С развитием ПЛИС на основе ячеек статического ОЗУ в электронике появились новые возможности, связанные с динамически рекофигурируемой логикой. Имеются в виду устройства, которые могут реконфигурироваться на лету в процессе работы системы.
ПЛИС содержит большое количество программируемых логических элементов и регистров, которые могут быть соединены разными способами для реализации различных функций. Примечательно, что компоненты на базе ячеек статического ОЗУ позволяют системе загружать в устройство новые конфигурационные данные. Хотя все логические вентили, регистры и ячейки статической памяти, из которых состоит ПЛИС, созданы на поверхности одного кремниевого кристалла, иногда полезно рассматривать это устройство как состоящее из двух отдельных частей – логических вентилей ( и регистров) и программируемых конфигурационных ячеек статического ОЗУ (рис.8.8).
Рис.8.8. Динамически реконфигурируемая логика: ПЛИС на основе ячеек статического ОЗУ
Гибкость реконфигурируемых устройств открывает поистине широкие возможности. Например, при включении питания ПЛИС может быть сконфигурирована для тестирования системы или самотестирования. Как только система завершает тестирование, ПЛИС вновь может быть переконфигурирована для выполнения своих основных функций.
Безусловно, возможность переконфигурировать функции отдельных узлов на печатной плате предоставляет дополнительные удобства для инженеров, но иногда им необходимо создавать ыелые системы, которые могут быть переконфигурированы на уровне печатной платы для выполнения различных, радикально отличающихся функций.
Для решения этой задачи необходимо конфигурировать соединения между устройствами на уровне печатной платы. Справиться с такой задачей могут так называемые программируемые пользователем устройства внутренних соединений ( или FPID – field-programmable interconnect devices), которые также известны как программируемые пользователем кристаллы внутренних соединений ( или FPIC – field-programmable interconnect chips). Эти микросхемы, применяемые для для соединения логических устройств, могут быть динамически переконфигурированы таким же образом, как и стандартные ПЛИС на основе ячеек статического ОЗУ. Так как каждая микросхема FPID может содержать более 1000 контактов, для соединения компонентов на печатной плате может понадобиться всего лишь несколько таких микросхем (рис.8.9).
Рис.8.9. Динамически реконфигурируемые соединения: FPID на основе ячеек статического ОЗУ
Интересно, что описанный подход не ограничивается только применением на уровне печатных плат. Любой из вышеописанных подходов потенциально может быть использован и в гибридных микросхемах, и в многокристальных модулях, и в однокристальных устройствах.
Одним из ограничивающих факторов для большинства ПЛИС на основе ячеек статического ОЗУ является необходимость затрачивать определённое время на переконфигурацию. Эта особенность вызвана тем, что ПЛИС обычно программируется с помощью последовательной загрузки данных ( или параллельной загрузки данных шириной всего лишь 8 бит). Когда речь идёт о высокотехнологичных устройствах с десятками миллионов конфигураций ячеек статической памяти, на перепрограммирование может уйти несколько секунд. Существуют некоторые типы ПЛИС, которые решают эту проблему путём использования большого количества контактов ввода/вывода общего назначения, которые в процессе программирования образуют широкую шину конфигурации ( скажем, 256 бит), а после конфигурирования возвращаются к выполнению своих основных функций.
Другой недостаток ПЛИС традиционной архитектуры состоит в том, что при необходимости внести самые незначительные изменения в конфигурацию приходится перепрограммировать целиком всё устройство. Некоторые ПЛИС позволяют переконфигурировать их по столбцам, но и в этом случае обеспечивается весьма грубый уровень структурирования. Кроме того, на время конфигурирования обычно приходится приостанавливать работу всей печатной платы. Также при программировании безвозвратно теряется содержимое всех регистров ПЛИС.
Длярешения этих проблем, примерно в 1994 году компания Atmel Corporation (www.atmel.com) предложила ряд интересных ПЛИС. Кроме поддержки динамической реконфигурации выбранных элементов внутренней логики, эти устройства характеризуются тем, что:
не нарушается работа входов и выходов устройства,
не нарушается работа средств синхронизации системы,
любые части устройства, не подверженные реконфигурации, могут продолжать свою работу,
не теряется информация внутренних регистров, даже тех, которые находятся в области реконфигурирования.
Особенный интерес представляет последний пункт этого списка, так как позволяет одной реализации функции передавать данные для другой. Например, группа регистров изначально может быть запрограммирована для работы в качестве двоичного счётчика. Затем в какой-то момент времени, определяемый главной системой, те же регистры могут быть переконфигурированы для работы в качестве линейного сдвигового регистра, начальное значение которого определяется последним содержимым счётчика до реконфигурирования.
Хотя эти устройства стали очередным эволюционным шагом в технологическом плане, с точки зрения их потенциальных возможностей шаг оказался поистине революционным. Для оценки этих возможностей были введены такие новые термины, как виртуальное программное обеспечение и кэш-логика.
Понятие “виртуальное программное обеспечение” возникло по аналогии с его программным эквивалентом – “виртуальной памятью”. Оба этих термина используются для представления предметов, которых на самом деле не существует. В случае виртуальной памяти компьютерная операционная система делает вид, что ей доступно больше оперативной памяти, чем есть на самом деле. Каждый раз, когда программа пытается получить доступ к ячейкам памяти, которых физически не существует, операционная система хитрит и меняет часть данных, находящихся в памяти, с данными, рамположенными на жёстком диске. Хотя эта процедура, известная, как ”свопинг”, замедляет процесс обработки данных, но в то же время позволяет программе выполнять свои задачи при меньшем объёме физичекой памяти.
Аналогично термин ”кэш-логика” произошёл от родственного ему понятия кэш-памяти, которая представляет собой высокоскоростную дорогостоящую статическую память для хранения текущих активных данных, в то время как основная часть данных помещается в более медленную недорогую память, например, в динамическую (DRAM).
Отслеживая местоположение и обращение к каждой микрофункции, а также объединяя функциональность и исключаяизбыточность, устройства с виртуальной аппаратной частью могут выполнять гораздо более сложные задачи, чем устройства, построенные по классической схеме. Например, в сложных функциях, требующих 100000 эквивалентных вентилей, в отдельный момент времени из них могут быть активными только 10000. Следовательно, с помощью сокращения или кэширования можно реализовать ещё функций на 90000 логических элементов. Тем самым небольшое и недорогое устройство с 10000 логическими элементами может заменить большое и дорогое со 100000 элементами (рис.8.10).
Таким образом возможно в реальном масштабе времени компилировать новые варианты устройств, которые могут быть использованы как динамически создаваемые аппаратные подпрограммы.
Рис.8.10. Виртуальное программное обеспечение