Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций Комп схем и АК 2011.doc
Скачиваний:
705
Добавлен:
10.02.2016
Размер:
13.66 Mб
Скачать

3.5. Шинные формирователи

Мультиплексоры предназначены для объединения нескольких выходов в тех случаях, когда заранее известно количество выходов, которые нужно объединять. Часто это неизвестно. Более того, часто количество объединяемых микросхем изменяется в процессе эксплуатации устройств. Наиболее яркий пример - это компьютеры, в которых в процессе эксплуатации изменяется объем оперативной памяти, количество портов ввода-вывода, количество дисководов. В таких случаях невозможно для объединения нескольких выходов воспользоваться логическим элементом "ИЛИ". Одним из вариантов решения этой проблемы является использование микросхем, имеющих выходы с открытым коллектором. Недостатком такого объединения нескольких микросхем на один провод является низкая скорость передачи информации, обусловленная затягиванием переднего фронта.

Эта проблема исчезает, если для объединения выходов применить элементы, имеющими выходы с тремя состояниями. Такие элементы называются шинными формирователями.

Основное назначение шинных формирователей – увеличение нагрузочной способности шин в микропроцессорных и других цифровых устройствах, отключение источников и приемников информации от шин за счет наличия третьего состояния, обеспечение двунаправленного обмена информацией.

На рис. 3.12,б представлена функциональная схема шинного формирователя (ШФ) на микросхеме К589АП16, представляющая собой четырехбитную двунаправленную схему, каждая линия которой содержит две логические схемы И с мощным выходом и тремя логическими состояниями. С одной стороны входы и выходы схем И объединены (DB1…DB4) и используются для интерфейса формирователя со схемами, совместимыми с ТТЛ. С другой стороны входы DI1…DI4 и выходы DO1…DO4 разделены для максимальной гибкости использования кристалла.

Назначение входов и выходов кристалла следующие: DI1…DI4 – информационные входы, DO1…DO4 – информационные выходы, DB1…DB4 – информационные входы-выходы реверсивной передачи информации; CS – выбор кристалла; BS – вход управления передачей информации. Если внимательно посмотреть на представленную функциональную схему шинного формирователя, то нетрудно рассмотреть, что данная схема представляет собой мультиплексор с двумя входами: DI и DB, выходом DO и управляющим сигналом BS. Режимы работы ШФ К589АП16 сведены в таблице 3.7.

Рис. 3.12. Условное обозначение (а) и функциональная схема (б) шинного формирователя К589АП16

Таблица 3.7 Режимы работы ШФ К589АП16

Логическое состояние по входам логики управления

Направление передачи информации

CS

BS

0

0

Передача от входов DI на выходы DB

0

1

Передача от входов DB на выходы DO

1

X

Отсутствие передачи (высокоинпедансное состояние)


3.6 Синтез кс на основе мультиплексоров

Кроме коммутационных функций, мультиплексоры позволяют реализовать комбинационные устройства на m (m – количество управляющих входов) входов и на один выход. Если комбинационное устройство, построенное на базе мультиплексора, не требует подключения дополнительных элементов логики, то оно называется универсальным логическим модулем (УЛМ). Отметим, что мультиплексор 8®1 (3 управляющих и 8 информационных входов) позволяет реализовать любую функцию трёх переменных.

Для получения УЛМ управляющие входы мультиплексора представляют как информационные, а информационные входы - как настроечные (следовательно, у мультиплексора 8 ®1 будут три информационных и 8- настроечных входов).

Пусть функция задана в виде карты Карно (рис. 3.13).

Рис. 3.13. Карта Карно функции, реализуемой мультиплексором

При построении УЛМ на карте Карно минимизационные контуры не проводятся. По карте записывается СHДФ с учетом состояния информационных (настроечных) входов мультиплексора.

Сопоставляя полученную СHДФ с формулой мультиплексора (3.8), определяем номера коэффициентов “а”, т.е. D0=a1, D3=a2, D5=a3, D6=a4. Следовательно, эти коэффициенты равны единице, т.е. D0 = D3 = D5= D6 = 1, а на остальных настроечных входах логические нули, т.е. D1 = D2 = D4 = D7 = 0.

Схема комбинационного устройства, построенного на базе мультиплексора 8-1 и реализующего функцию f , приведена на рис. 3.14.

Рис. 3.14. Схема соединения настроечных входов мультиплексора, реализующую функцию f

Как следует из рис. 3.14, построение комбинационного устройства на базе мультиплексора сводится к объединению настроечных входов так, чтобы получилось две группы. К одной группе входов, в соответствии с заданной функцией, подают логический “0”, а другой - “1”.

     На базе мультиплексоров можно синтезировать комбинационные устройства, которые могут реализовать функции на большее число переменных, чем количество управляющих входов мультиплексора. Очевидно, и в этом случае, мультиплексор сохраняет свою универсальность, так как часть переменных реализуемой функции непосредственно подается на входы Х1 . . . Хm мультиплексора (количество переменных, непосредственно подаваемых на управляющие входы мультиплексора равноm).

Часто использование мультиплексора при синтезе КУ, реализующего функцию с числом переменных больше, чем число управляющих входов мультиплексора, существенно упрощает этот процесс и схему.

В общем случае, когда требуется синтезировать КС, реализующее функцию N аргументов на мультиплексоре с M управляющими входами и 2М информационными входами, М младших переменных из набора Х1, Х2, ... ХN следует подать на управляющие входы, а информационные сигналы (настроечные) D0, D1, . . . . D2м нужно представить функциями остальных (N - M) переменных, как показано на рис. 3.15. Тогда синтез КС сводится, по сути дела, к синтезу схемы формирования информационных сигналов, которую можно рассматривать как внутреннюю более простую КС.

Рис. 3.15. Общая схема комбинационного устройства на мультиплексоре, реализующего функцию N переменных