
- •Курс лекцій з фізики
- •Змістовний модуль 9
- •I. Фізичні основи механіки…………………………………………………….18
- •II. Електростатика…………………………………………………………….....47
- •III. Постійний електричний струм………………………………………..77
- •IV. Електромагнетизм………………………………………………………….…91
- •V. Коливання та хвилі……………………………………………...…122
- •VI. Хвильова оптика……………………………………………….…150
- •VII. Ядерна фізика…………………………………………………….244
- •VIII. Основи молекулярної фізики і термодинаміки……………...261
- •IX. Фізика твердого тіла………………………………………..…283
- •Змістовний модуль № 1
- •Вступна лекція
- •Роль фізики у розвитку техніки та вплив техніки на розвиток фізики
- •I. Фізичні основи механіки
- •Механічний рух полягає в зміні з часом взаємного розташування тіл, або їх частин у просторі.
- •1. Основи кінематики поступального руху
- •В). Циліндрично-полярні координати ρ, φ, z.
- •Якщо траекторія – пряма лінія , то такий рух називають прямолінійним, а якщо крива – криволінійним. Найпростішим прикладом криволінійного руху є рух матаеріальної точки по колу :
- •2. Основи кінематики обертального руху
- •3. Абсолютні і відносні швидкості та прискорення
- •І закон Ньютона
- •Іі закон Ньютона
- •III закон Ньютона
- •5. Закон збереження імпульсу
- •6. Рух тіла із змінною масою. Реактивний рух
- •Імпульс системи
- •Одержана формула виражає закон руху центра мас
- •7.1. Сили інерції
- •Приклади руху тіл у нісв
- •8.1 Момент сили та момент імпульса
- •8.2 Рівняння моментів
- •8.3 Момент інерції тіла відносно осі обертання
- •8.4 Рівняння динаміки обертального руху
- •8.5 Закон збереження момента імпульса
- •9. Пружні напруження. Закон Гука. Деформація стрижнів
- •10. Робота. Енергія
- •10.1 Кінетична енергія з найдемо роботу , яку виконує сила при переміщенні матеріальної точки масою m із положення 1 в положення 2.
- •10.3 Закон збереження механічної енергії
- •10.4 Кінетична енергія тіла при обертальному русі
- •11. Рівняння руху та рівноваги твердого тіла
- •Іі. Електростатика
- •15. Закон збереження електричного заряду. Електричне поле. Напруженість електричного поля
- •16. Потік вектора напруженості.
- •17. Теорема Остроградського-Ґаусса
- •18. Застосування теореми Остроградського-Ґаусса до розрахунку напруженості електростатичних полів
- •20. Напруженість як градієнт потенціалу Розглянемо випадок переміщення одиничного додатнього точкового заряду q iз точки 1 в точку 2 вздовж осі X.
- •17. Провідники у електростатичному полі
- •Явище перерозподілу поверхневих зарядів на провіднику у зовнішньому електростатичному полі називається електростатичною індукцією, а перерозподілені заряди – індукованими зарядами.
- •17.1 Електрична ємність
- •17.2 Взаємна електроємність
- •18. Енергія зарядженого відокремленого провідника, конденсатора. Енергія електростатичного поля. Об’ємна густина енергії
- •19. Діелектрики у електростатичному полі
- •19.1 Типи діелектриків. Електронна і орієнтаційна поляризація
- •19.2 Неполярні діелектрики. Електронна поляризація
- •19.3 Полярні діелектрики. Дипольна, або орієнтаційна поляризація
- •19.4 Іонні діелектрики. Іонна поляризація
- •20. Механічні ефекти в діелектриках. Електрострикція та п’єзоефект. Сегнотелектрики.
- •22.Закон Ома у диференціальній формі
- •23. Закон Джоуля-Лєнца
- •24. Закон Ома у інтегральній формі
- •25. Розрахунок параметрів електричних кіл
- •26. Електричний струм у вакуумі
- •27. Робота виходу електронів з металу. Контактна різниця потенціалів
- •28. Термоелектричні явища
- •29. Електричний струм у газах
- •29.1. Типи газових розрядів:
- •2. Взаємодія між постійним електричним струмом і магнітною стрілкою
- •Якщо контур зі струмом повернути на 90° від рівноважного положення, то на нього буде діяти максимальний обертальний момент Мmax.
- •31. Закон Біо-Савара-Лапласа
- •32. Закон повного струму для магнітного поля у вакуумі. Вихровий характер магнітного поля
- •Якщо контур не охоплює провідник зі струмом, то
- •33. Cила Лоренца
- •34. Контур зі струмом у магнітному колі
- •35. Магнітний потік. Теорема Остроградського-Ґаусса
- •36. Робота переміщення провідника і контуру зі струмом у магнітному полі
- •Матеріал для самостійної роботи
- •37. Магнітні моменти атомів. Намагніченість. Атоми в магнітному полі
- •39. Магнітне поле в речовині. Закон повного струму для магнітного поля в речовині. Напруженість магнітного поля
- •40. Феромагнетики
- •41. Явище електромагнітної індукції. Закон Ленца. Закон електромагнітної індукції (закон Фарадея)
- •42. Явище самоіндукції. Індуктивність
- •43. Явище взаємної індукції
- •44. Енергія магнітного поля
- •46. Вільні електромагнітні коливання у коливальному контурі
- •Якщо конденсатор зарядити (надати заряд q), а потім замкнути коло ключем к, то він починає розряджатись.
- •Тоді сила струму змінюється у контурі за законом
- •47. Диференціальне рівняння згасаючих коливань і його розв’язок
- •Графік залежності х від часу наведено на рис.1
- •48. Диференціальне рівняння вимушених коливань і його розв’язок. Резонанс
- •49. Вимушені коливання у електромагнітному коливальному контурі. Кола змінного струму. Закон Ома
- •50. Резонанс напруг
- •51. Розгалуження змінних струмів. Резонанс струму
- •52. Робота та потужність змінного струму
- •53. Утворення хвиль в пружному середовищі. Поздовжні і поперечні хвилі. Рівняння біжучої хвилі
- •54. Інтерференція хвиль. Рівняння стоячої хвилі
- •55.Звукові хвилі та їх властивості. Ефект Допплера.
- •Ефект Допплера
- •56. Основи теорії Максвелла для електромагнітного поля. Струм зміщення
- •57. Рівняння Максвелла для електромагнітного поля
- •58. Основні властивості електромагнітних хвиль
- •Змістовний модуль 8
- •Vіii. Основи молекулярної фізики і термодинаміки
- •99. Статистичний і термодинамічний
- •100. Рівняння молекулярно-кінетичної теорії ідеального газу для тиску
- •101. Середня кінетична енергія
- •102. Розподіл Максвелла молекул
- •103. Барометрична формула. Розподіл Больцмана частинок у зовнішньому потенціальному полі
- •104. Закон рівномірного розподілу енергії за ступенями вільності молекул
- •105. Перший закон термодинаміки. Робота газу при зміні його об'єму
- •106. Теплоємність. Класична молекулярно-кінетична теорія теплоємностей ідеального газу та її обмеженість.
- •107. Застосування першого закону термодинаміки до ізопроцесів
- •108. Адіабатний процес. Застосування першого закону термодинаміки до адіабатного процесу ідеального газу
- •109. Коловий процес. Теплові двигуни і холодильні машини. Оборотні і необоротні процеси
- •110. Цикл Карно і його коефіцієнт корисної дії для ідеального газу
- •111. Другий закон термодинаміки
- •112. Ентропія. Ентропія ідеального газу
- •113. Теорема Нернста та її наслідки
- •Іх. Фізика твердого тіла
- •114. Поняття про квантові статистики Бозе – Ейнштейна і Фермі - Дірака
- •115. Розподіл електронів провідності в металі за енергіями. Енергія Фермі
- •116. Енергетичні зони в кристалах
- •117. Розподіл електронів по енергетичних зонах. Валентна зона і зона провідності. Метали, діелектрики і напівпровідники
- •118. Власна провідність напівпровідників
- •119. Домішкова провідність напівпровідників
- •121. Люмінесценція твердих тіл
- •123.Рідкі кристали
19.2 Неполярні діелектрики. Електронна поляризація
С
или,
з якими електричне поле діє на позитивні
і негативні заряди молекул, напрямлені
протилежно і тому розсувають їх. В
електричному полі центри мас позитивних
і негативних зарядів кожної молекули
не збігаються, а зміщенні на відстань
l
між ними (рис.11). Чим більша напруженість
поля
,
тим на більшу відстань l
розсуваються заряди протилежних знаків.
Молекула з неполярної перетворюється
в полярну з дипольним моментом
.
О
скільки
l~Е,
а
,
то р~Е,
або
,
де
– електрична стала,
– поляризованість окремої молекули
діелектрика. Величина
має неоднакові значення для атомів
і молекул різних речовин. Поляризованість
характеризує здатність електронів в
атомі або в молекулі зміщуватись під
дією сил електричного поля.
Дипольні моменти молекул неполяризованих діелектриків називають індукованими, або квазіпружними.
При внесенні неполярного діелектрика в елекгричне поле всі індуковані дипольні моменти розміщуються ланцюжками вздовж ліній напруженості (рис. 12), де ● – негативні заряди, а ○ – позитивні. Внаслідок цього грані діелектрика набувають різ ноіменних зарядів - діелектрик поляризується. Такого роду поляризація діелектрика називається електронною.
19.3 Полярні діелектрики. Дипольна, або орієнтаційна поляризація
Я
кщо
діелектрик з полярними молекулами
не перебуває у зовнішньому електричному
полі, то внаслідок хаотичного теплового
руху молекул вектори їхніх дипольних
моментів орієнтовані хаотично (рис. 13,
a).
Тому векторна сума дипольних моментів
всіх молекул, які перебувають у довільному
об’ємі
діелектрика, дорівнює нулю.
Якщо діелектрик з полярними молекулами внести в електричне поле, то під дією поля полярні молекули діелектрика намагаються повернутись так, щоб вектори їх дипольних моментів збігались з напрямком вектора напруженості поля (рис. 13, б). Але тепловий рух молекул хаотично розкидає диполі і заважає орієнтації всіх векторів (дипольних моментів) вздовж поля. Внаслідок спільної дії цих двох факторів в діелектрику переважає орієнтація дипольних моментів молекул вздовж поля. Ця орієнтація буде тим повнішою, чим сильніше електричне поле в діелектрика і чим слабший тепловий рух молекул, тобто, чим нижча температура. Цей процес називають орієнтаційною поляризацією діелектрика.
19.4 Іонні діелектрики. Іонна поляризація
У
кристалічних діелектриках, які мають
кубічні кристалічні ґратки (NaCl,
KCl,
Naj
та інші) під дією електричного поля всі
позитивні іони зміщуються в напрямку
напруженості поля
,а
всі негативні іони – в протилежному
напрямку (рис. 14). При цьому в кожній
одиниці об’єму кристала перебуває
однакова кількість позитивних і
негативних іонів, а на кожній з двох
протилежних граней кристала,
перпендикулярних до вектора напруженості
електричного поля, містяться іони
якого-небудь одного знака. Такий вид
поляризації називають
іонною
поляризацією.
Заряди, які виникають на гранях діелекрика, не вільні, вони зв’язані з атомами та молекулами речовини.
Явище обмеженого зміщення зарядів в атомах і молекулах або напрямленої орієнтації дипольних моментів жорстких молекул в зовнішньому електричному полі, внаслідок якого на поверхні діелектрика виникають зв’язані електричні заряди, називається поляризацією діелектриків.
Ступінь поляризації діелектрика характеризується вектором поляризації, або поляризованістю.
Вектором поляризації називають границю відношення електричного моменту деякого об’єму діелектрика до цього об’єму, коли об’єм прямує до нуля:
,
де
–
дипольний момент і-то
диполя, п
–
кількість
диполів, які знаходяться в об’ємі
.
Отже,
вектор
є дипольним моментом одиниці об’єму
діелектрика, який виникає при його
поляризації.
Для
однорідного діелектрика, який перебуває
в однорідному електричному полі,
справедлива рівність:
,
де п
– кількість молекул в одиниці об’єму,
– дипольний
момент молекули. Оскільки
,
то
.
Позначимо
,
отже,
.
Коефіцієнт
називається діелектричною
сприйнятливістю речовини
або поляризованістю
одиниці об’єму діелектрика.
-
величина безрозмірна (
для води,
для спиртів).