![](/user_photo/528_5NJmi.jpg)
- •1. Введение в анализ и синтез базовых узлов линейной обработки
- •1.1. Преобразование Лапласа как метод анализа линейных схем
- •1.2. Примеры расчета передаточных функций некоторых пассивных
- •1.2.1. Пассивный rc фильтр низких частот первого порядка
- •1.2.2. Простейший пассивный rlc фильтр низких частот
- •1.3. Примеры расчета передаточных функций простейших активных
- •1.3.1. Неинвертирующий усилитель
- •1.3.2. Инвертирующий усилитель
- •1.3.3. Активный инвертирующий интегратор
- •1.4. Введение в реализацию arc биквада
- •1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- •1.5. Введение в концепцию переключаемых конденсаторов
- •1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- •1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- •1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- •1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- •1.5.5. Неинвертирующий пк интегратор с задержкой
- •1.6. Реализация биквада на базе переключаемых конденсаторах
- •1.7. Дискретизация аналогового сигнала. Идеальные выборки
- •1.7.1. Передаточная функция пк интегратора без задержки
- •1.7.2. Передаточная функция пк интегратора с задержкой
- •Модели элементов интегральных схем
- •3. Базовые элементы кмдп операционных усилителей
- •3.1. Простейший усилитель напряжения с общим истоком
- •3.1.1. Простейший усилительный каскад с общим истоком и активной
- •3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- •3.1.3. Частота единичного усиления простейшего усилителя
- •3.1.4. Соотношение малосигнальных параметров простейшего
- •3.1.5. Простейший усилитель в режиме большого сигнала
- •3.1.6. Расчет выходного сопротивления
- •3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- •3.1.8. Пример топологии простейшего усилителя
- •3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- •3.3. Токовое зеркало
- •3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- •3.4. Истоковый повторитель
- •3.4.1. Выходное сопротивление и входная емкость истокового
- •3.5. Метод увеличения выходного сопротивления усилителя
- •3.6. Каскодный усилитель
- •3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- •3.6.2. Роль емкости в выходном узле каскодного усилителя.
- •3.6.3. Диапазон изменения выходного напряжения
- •3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- •3.6.5. Каскодное токовое зеркало
- •3.6.6. Самосмещаемое каскодное токовое зеркало
- •3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- •3.8. Дифференциальный каскад
- •3.8.1. Допустимый диапазон входного синфазного напряжения
- •3.8.2. Дифференциальный каскад как источник тока, управляемый входным напряжением. Несимметричный и симметричный входные сигналы
- •4. Архитектуры кмдп операционных усилителей
- •4.1. Методика оценки малосигнальных характеристик операционного усилителя
- •4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- •4.1.2. Расчет запаса фазы операционного усилителя с действительными
- •4.2. Однокаскадные операционные усилители как операционные
- •4.2.1. «Телескопический» оитун
- •4.2.1.1. Базовые характеристики «телескопического» оитун
- •4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- •4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- •4.2.1.4. Анализ переходных процессов
- •4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- •4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- •4.2.2.2. Режим малого сигнала
- •4.2.2.3. Переходной процесс в режиме большого сигнала
- •4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- •4.3. Двухкаскадный операционный усилитель (оитун)
- •4.3.1. Базовая схема двухкаскадного оитун
- •4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- •4.3.3. Передаточная функция двухкаскадного усилителя
- •4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- •4.3.5. Частота единичного усиления двухкаскадного оитун
- •4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- •4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- •4.3.9. Распространенная архитектура двухкаскадного оитун
- •5. Шум и его анализ в кмдп аналоговых имс
- •5.1. Основные определения
- •5.1.1. Cуммирование шумов
- •5.1.2. Анализ шума в частотной области
- •5.2. Пример расчета шума arc фильтра первого порядка
- •5.2.1. Реакция на шумовой источник тока
- •5.2.2. Реакция на шумовой источник тока
- •5.2.3. Реакция на шумовой источник напряжения
- •5.4. Приведенный ко входу собственный «белый» шум повторителя
- •5.5. Собственный шум многокаскадного усилителя
- •5.6. Шум каскодного усилителя
- •6. Полностью дифференциальные оитун
- •6.1. Базовая архитектура полностью дифференциальных схем
- •6.2. Принципиальные преимущества полностью дифференциальных схем
- •6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- •6.3. Принципиальные недостатки полностью дифференциальных схем
- •6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- •6.4.1. Схема с ограниченным диапазоном входных сигналов.
- •6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- •6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов
6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
Пусть на вход
дифференциального ОИТУН подается
НЕсимметричный
малый
входной сигнал
.
Запишем выражения для токов во входных транзисторах дифкаскада:
и
(6.4)
Имеем очевидное
соотношение:
.
(6.5)
Подставляем сюда
из (6.4) выражения для
и
,
и после алгебраических преобразований
получаем:
(6.6)
Пусть на вход
дифференциального ОИТУН подается
симметричный
малый
входной сигнал. При этом для токов во
входных транзисторах дифкаскада:
и
(6.7)
Подставляем (6.7)в
(6.4) и получаем
(6.8)
Итак, при малом
симметричном
входном
сигнале,
т.е. при
условии
,
можно пренебречь изменением потенциала
общего истока дифкаскада. Другими
словами, вполне корректно потенциал
общего истока дифкаскада можно признатьпостоянным,
не вызывающим перезарядки паразитной
емкости в узле общего истока. Но формально
постоянный потенциал узла В означает,
что этот узел присоединен к источнику
постоянного напряжения
,
и обе симметричные половины полностью
дифференциального ОИТУН необходимо
рассматривать каксамостоятельные
подсхемы, никаким образом не влияющие
друг на друга по трактам дифференциального
сигнала
(как показано ниже, они связаны лишь
общей схемой синфазной
обратной
связи).
Как следствие, каждая из половин по
сравнению с несимметричным ОИТУН
эффективно
имеет вдвое
меньшее количество узлов
и, соответственно, вдвое меньшее
количество неосновных полюсов. Последнее
означает практически вдвое более высокую
частоту эффективного неосновного полюса
и больший запас фазы.
Среди узлов в дифференциальном по входу, но НЕсимметричном по выходу ОИТУНе особо выделяют токовое зеркало, всегда присутствующее в тракте дифференциального сигнала. В нем к выходу диода всегда подключена паразитная емкость двух затворов, и сопутствующий неосновной полюс всегда имеет как минимум в 2 раза меньшую собственную частоту в сравнении с остальными.
В полностью дифференциальных ОИТУН подобное токовое зеркало на пути дифференциального сигнала отсутствует, и, в результате увеличения запаса фазы, они могут иметь практически в 2 раза более высокую частоту единичного усиления.
6.3. Принципиальные недостатки полностью дифференциальных схем
Из принципиальных недостатков отмечают:
(1) Удвоение
количества компонентов в схеме обработки
сигнала (см рис. 6.1). Если номиналы
компонентов на рис. 6.1b
– такие же, как в соответствующей
НЕсимметричной схеме на Рис. 6.1а, то
площадь схемы увеличится практически
в 2 раза. Ситуация, однако, облегчается
тем, что в симметричной схеме при
одинаковом с НЕсимметричным вариантом
требуемым уровнем шума номиналы всех
конденсаторов (и переключаемых, и
интегрирующих) можно делать в 2 раза
меньше, поскольку при этом шум
переключаемого конденсатора (ПК)
уменьшается как раз в
раз. Площадь при этом, разумеется,
увеличивается, но не более чем на 20 …
30% из-за увеличения вдвое количества
компонентов и соединительных проводников,
требующих некоторого расстояния между
собой и определенного порядка расположения
относительно друг друга.
(2) Необходимость введения в состав симметричного ОИТУН специальной схемы синфазной обратной связи (СОС). Речь идет о потенциалах на обоих симметричных выходах, которые, очевидно, должны быть симметричны друг другу относительно аналоговой «земли», т.е. половины питания, а при отсутствии дифференциального сигнала на входе потенциалы на обоих выходах должны быть равны половине питания (разумеется, с точностью, определяемой смещением нуля).
Вообще говоря, схема СОС является схемой автоматического регулировании, и ее проектирование является нетривиальной задачей, поскольку она должна отвечать следующим условиям:
– обеспечивать
синфазную обратную связь с требуемой
точностью во всем диапазоне
выходного сигнала;
– иметь быстродействие, т.е. частоту единичного усиления в режиме малого сигнала и скорость изменения выходного напряжения в режиме большого сигнала во многих случаях не худшие, чем для дифференциального сигнала;
– обеспечивать минимальную дополнительную емкостную нагрузку на выходные узлы.