
- •1. Введение в анализ и синтез базовых узлов линейной обработки
- •1.1. Преобразование Лапласа как метод анализа линейных схем
- •1.2. Примеры расчета передаточных функций некоторых пассивных
- •1.2.1. Пассивный rc фильтр низких частот первого порядка
- •1.2.2. Простейший пассивный rlc фильтр низких частот
- •1.3. Примеры расчета передаточных функций простейших активных
- •1.3.1. Неинвертирующий усилитель
- •1.3.2. Инвертирующий усилитель
- •1.3.3. Активный инвертирующий интегратор
- •1.4. Введение в реализацию arc биквада
- •1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- •1.5. Введение в концепцию переключаемых конденсаторов
- •1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- •1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- •1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- •1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- •1.5.5. Неинвертирующий пк интегратор с задержкой
- •1.6. Реализация биквада на базе переключаемых конденсаторах
- •1.7. Дискретизация аналогового сигнала. Идеальные выборки
- •1.7.1. Передаточная функция пк интегратора без задержки
- •1.7.2. Передаточная функция пк интегратора с задержкой
- •Модели элементов интегральных схем
- •3. Базовые элементы кмдп операционных усилителей
- •3.1. Простейший усилитель напряжения с общим истоком
- •3.1.1. Простейший усилительный каскад с общим истоком и активной
- •3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- •3.1.3. Частота единичного усиления простейшего усилителя
- •3.1.4. Соотношение малосигнальных параметров простейшего
- •3.1.5. Простейший усилитель в режиме большого сигнала
- •3.1.6. Расчет выходного сопротивления
- •3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- •3.1.8. Пример топологии простейшего усилителя
- •3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- •3.3. Токовое зеркало
- •3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- •3.4. Истоковый повторитель
- •3.4.1. Выходное сопротивление и входная емкость истокового
- •3.5. Метод увеличения выходного сопротивления усилителя
- •3.6. Каскодный усилитель
- •3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- •3.6.2. Роль емкости в выходном узле каскодного усилителя.
- •3.6.3. Диапазон изменения выходного напряжения
- •3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- •3.6.5. Каскодное токовое зеркало
- •3.6.6. Самосмещаемое каскодное токовое зеркало
- •3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- •3.8. Дифференциальный каскад
- •3.8.1. Допустимый диапазон входного синфазного напряжения
- •3.8.2. Дифференциальный каскад как источник тока, управляемый входным напряжением. Несимметричный и симметричный входные сигналы
- •4. Архитектуры кмдп операционных усилителей
- •4.1. Методика оценки малосигнальных характеристик операционного усилителя
- •4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- •4.1.2. Расчет запаса фазы операционного усилителя с действительными
- •4.2. Однокаскадные операционные усилители как операционные
- •4.2.1. «Телескопический» оитун
- •4.2.1.1. Базовые характеристики «телескопического» оитун
- •4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- •4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- •4.2.1.4. Анализ переходных процессов
- •4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- •4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- •4.2.2.2. Режим малого сигнала
- •4.2.2.3. Переходной процесс в режиме большого сигнала
- •4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- •4.3. Двухкаскадный операционный усилитель (оитун)
- •4.3.1. Базовая схема двухкаскадного оитун
- •4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- •4.3.3. Передаточная функция двухкаскадного усилителя
- •4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- •4.3.5. Частота единичного усиления двухкаскадного оитун
- •4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- •4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- •4.3.9. Распространенная архитектура двухкаскадного оитун
- •5. Шум и его анализ в кмдп аналоговых имс
- •5.1. Основные определения
- •5.1.1. Cуммирование шумов
- •5.1.2. Анализ шума в частотной области
- •5.2. Пример расчета шума arc фильтра первого порядка
- •5.2.1. Реакция на шумовой источник тока
- •5.2.2. Реакция на шумовой источник тока
- •5.2.3. Реакция на шумовой источник напряжения
- •5.4. Приведенный ко входу собственный «белый» шум повторителя
- •5.5. Собственный шум многокаскадного усилителя
- •5.6. Шум каскодного усилителя
- •6. Полностью дифференциальные оитун
- •6.1. Базовая архитектура полностью дифференциальных схем
- •6.2. Принципиальные преимущества полностью дифференциальных схем
- •6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- •6.3. Принципиальные недостатки полностью дифференциальных схем
- •6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- •6.4.1. Схема с ограниченным диапазоном входных сигналов.
- •6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- •6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов
1.2. Примеры расчета передаточных функций некоторых пассивных
линейных схем
В аналоговой схемотехнике рассматриваются схемы обработки сигнала. По умолчанию предполагается, что сигнал представляет собой переменное и непредсказуемое значение, либо тока, либо напряжения. Если бы его значение всегда можно было бы предсказать, этот сигнал потерял бы для нас интерес, и для его обнаружения и измерения не требуется создавать аналоговые схемы, чему посвящен настоящий курс.
Осциллограмма
типового сигнала (например, человеческая
речь) выглядит шумоподобной, т.е. ее
значения, как превышающие некоторую
постоянную составляющую (отсутствие
сигнала), так и меньшие ее, являются
равновероятными.
По этой причине практически в любом
аналоговом узле в качестве постоянной
составляющей напряжения (напряжение
на сигнальном проводе при отсутствии
сигнала) принято напряжение, равноудаленное
от потенциалов источника (источников)
питания. В случае одного источника
питания потенциал постоянной составляющей
равен половине напряжения питания, т.е.
.
Ввиду особого его расположения и
значения, этот потенциал называют
потенциалом «аналоговой земли»
.
В дальнейшем выражение «аналоговая
земля», в том или ином падеже, будем
использоватьбез
кавычек.
1.2.1. Пассивный rc фильтр низких частот первого порядка
Проведем анализ этой простейшей частотозависимой линейной схемы, представленной на рис. 1.1. Эту схему называют интегрирующей RC цепочкой, что следует из уравнения Кирхгофа для оригинала схемы (во временнòй области):
,
(1.5)
откуда после
интегрирования
(1.6)
Определим характеристики схемы в частотной области, пользуясь методом преобразования Лапласа.
Рис. 1.1: (а) пассивный RC фильтр низких частот первого порядка: (b) зависимость коэффициента передачи от частоты; (с) зависимость сдвига фазы между входным и выходным сигналами от частоты.
Напомним известную из курса теоретической электротехники передаточную функцию пассивного RC фильтра в стационарном состоянии. Для ее получения используем законы Кирхгофа, справедливые как для оригиналов, так и для изображений токов:
Очевидно, что
,
т.е.
(1.7)
Передаточная функция:
(1.8)
Здесь
– действительный полюс передаточной
функции.
Для стационарного
состояния
,
поэтому
(1.9)
Модуль
комплексного выражения (1.7) определяет
зависимость от частоты коэффициента
передачи
напряжения с входа
на выход
рассматриваемого фильтра:
(1.10)
Сдвиг фазы
между напряжениями
и
определяется выражением:
(1.11)
На малых частотах,
при которых круговая частота сигнала
много меньше собственной круговой
частоты полюса передаточной функции,
т.е.
,
выражение для
значительно упрощается и аппроксимируется
выражением:
(1.12)
На высоких частотах,
при которых круговая частота сигнала
много больше собственной круговой
частоты полюса передаточной функции,
т.е.
,
выражение для
также упрощается, и соответствующая
аппроксимация имеет вид:
(1.13)
Иллюстрации точных
и аппроксимированных зависимостей от
частоты коэффициента передачи
и разности фаз
между входным и выходным сигналами
представлены на рис. 1.1(b)
и 1.1(с) соответственно.