
- •1. Введение в анализ и синтез базовых узлов линейной обработки
- •1.1. Преобразование Лапласа как метод анализа линейных схем
- •1.2. Примеры расчета передаточных функций некоторых пассивных
- •1.2.1. Пассивный rc фильтр низких частот первого порядка
- •1.2.2. Простейший пассивный rlc фильтр низких частот
- •1.3. Примеры расчета передаточных функций простейших активных
- •1.3.1. Неинвертирующий усилитель
- •1.3.2. Инвертирующий усилитель
- •1.3.3. Активный инвертирующий интегратор
- •1.4. Введение в реализацию arc биквада
- •1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- •1.5. Введение в концепцию переключаемых конденсаторов
- •1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- •1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- •1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- •1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- •1.5.5. Неинвертирующий пк интегратор с задержкой
- •1.6. Реализация биквада на базе переключаемых конденсаторах
- •1.7. Дискретизация аналогового сигнала. Идеальные выборки
- •1.7.1. Передаточная функция пк интегратора без задержки
- •1.7.2. Передаточная функция пк интегратора с задержкой
- •Модели элементов интегральных схем
- •3. Базовые элементы кмдп операционных усилителей
- •3.1. Простейший усилитель напряжения с общим истоком
- •3.1.1. Простейший усилительный каскад с общим истоком и активной
- •3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- •3.1.3. Частота единичного усиления простейшего усилителя
- •3.1.4. Соотношение малосигнальных параметров простейшего
- •3.1.5. Простейший усилитель в режиме большого сигнала
- •3.1.6. Расчет выходного сопротивления
- •3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- •3.1.8. Пример топологии простейшего усилителя
- •3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- •3.3. Токовое зеркало
- •3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- •3.4. Истоковый повторитель
- •3.4.1. Выходное сопротивление и входная емкость истокового
- •3.5. Метод увеличения выходного сопротивления усилителя
- •3.6. Каскодный усилитель
- •3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- •3.6.2. Роль емкости в выходном узле каскодного усилителя.
- •3.6.3. Диапазон изменения выходного напряжения
- •3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- •3.6.5. Каскодное токовое зеркало
- •3.6.6. Самосмещаемое каскодное токовое зеркало
- •3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- •3.8. Дифференциальный каскад
- •3.8.1. Допустимый диапазон входного синфазного напряжения
- •3.8.2. Дифференциальный каскад как источник тока, управляемый входным напряжением. Несимметричный и симметричный входные сигналы
- •4. Архитектуры кмдп операционных усилителей
- •4.1. Методика оценки малосигнальных характеристик операционного усилителя
- •4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- •4.1.2. Расчет запаса фазы операционного усилителя с действительными
- •4.2. Однокаскадные операционные усилители как операционные
- •4.2.1. «Телескопический» оитун
- •4.2.1.1. Базовые характеристики «телескопического» оитун
- •4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- •4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- •4.2.1.4. Анализ переходных процессов
- •4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- •4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- •4.2.2.2. Режим малого сигнала
- •4.2.2.3. Переходной процесс в режиме большого сигнала
- •4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- •4.3. Двухкаскадный операционный усилитель (оитун)
- •4.3.1. Базовая схема двухкаскадного оитун
- •4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- •4.3.3. Передаточная функция двухкаскадного усилителя
- •4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- •4.3.5. Частота единичного усиления двухкаскадного оитун
- •4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- •4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- •4.3.9. Распространенная архитектура двухкаскадного оитун
- •5. Шум и его анализ в кмдп аналоговых имс
- •5.1. Основные определения
- •5.1.1. Cуммирование шумов
- •5.1.2. Анализ шума в частотной области
- •5.2. Пример расчета шума arc фильтра первого порядка
- •5.2.1. Реакция на шумовой источник тока
- •5.2.2. Реакция на шумовой источник тока
- •5.2.3. Реакция на шумовой источник напряжения
- •5.4. Приведенный ко входу собственный «белый» шум повторителя
- •5.5. Собственный шум многокаскадного усилителя
- •5.6. Шум каскодного усилителя
- •6. Полностью дифференциальные оитун
- •6.1. Базовая архитектура полностью дифференциальных схем
- •6.2. Принципиальные преимущества полностью дифференциальных схем
- •6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- •6.3. Принципиальные недостатки полностью дифференциальных схем
- •6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- •6.4.1. Схема с ограниченным диапазоном входных сигналов.
- •6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- •6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов
Какую работу нужно написать?
5.2. Пример расчета шума arc фильтра первого порядка
На рисунке 5.5 представлены электрическая схема ARC фильтра первого порядка и эквивалентная схема для расчета суммарного шума.
Рис. 5.5. ARC фильтр первого порядка: (а) электрическая схема;
(b) эквивалентная схема для расчета суммарного шума
Пусть для простоты ОУ имеет бесконечное усиление. Тогда передаточная функция фильтра при подаче входного сигнала как на Рис. 5.5.а, т.е. в цепь инвертирующего входа:
(5.22)
Передаточная функция фильтра при подаче входного сигнала на неинвертирующий вход:
(5.23)
Теперь – о правомерности выбранных на Рис. 5.5.в эквивалентных схем шумящих резисторов. Как видно из рисунка, для R1 и Rf выбраны эквивалентные схемы с присоединенными параллельно источниками шумовых токов, а для R2 и для ОУ – присоединенный последовательно источник шумового напряжения. Проблема – в том, что последовательно присоединенный в любом месте источник напряжения как бы разделяет шумящий резистор как целостную систему на части. Последнее в цепях со сквозным прохождением тока может привести к неправильной логике анализа и ошибкам.
Что касается источников шумовых токов, то, присоединенные параллельно, они не нарушают наглядной целостности и симметрии шумящего резистора, поэтому использование именно такого представления в любых цепях с протеканием постоянного тока предпочтительно и удобно. Однако, в цепях с отсутствием протекания постоянного тока, как на неинвертирующем входе КМДП ОУ с практически неопределенно высоким сопротивлением, корректно и достаточно удобно применять источники шумового напряжения.
Рассмотрим реакцию
изображенной на Рис. 5.5.b
схемы фильтра на шумовые источники
(тока и напряжения) в отдельности
(предполагая, что остальные равны нулю).
Затем возведем полученные выходные
напряжения в квадрат, сложим и получим
суммарную спектральную плотность
мощности шума на выходе
.
Далее, для получения полной мощности
шума
на выходе, производится интегрирование
(в интересующих пределах) по частоте
суммарной спектральной плотности шума
с учетом конкретных зависимостей
спектральных плотностей шума от различных
источников шума.
5.2.1. Реакция на шумовой источник тока
Отметим, что на обоих выводах резистора R1 – постоянные потенциалы, равные нулю, и ток через R1 равен нулю.
Уравнение Кирхгофа:
(5.24а)
Получаем:
(5.24b)
Спектральная
плотность шума на выходе от шумового
источника
:
(5.25)
5.2.2. Реакция на шумовой источник тока
По-прежнему учитываем, что ток через R1 равен нулю.
Уравнение Кирхгофа:
(5.26а)
Получаем:
(5.26b)
Спектральная
плотность шума на выходе от шумового
источника
:
(5.27)
Как видно из (5.25) и (5.27), реакция на шумовой источник тока в цепи инвертирующего входа ОУ равна напряжению от протекания этого тока в резисторе в цепи обратной связи, умноженному на коэффициент передачи ARC фильтра без усиления.