
- •1. Введение в анализ и синтез базовых узлов линейной обработки
- •1.1. Преобразование Лапласа как метод анализа линейных схем
- •1.2. Примеры расчета передаточных функций некоторых пассивных
- •1.2.1. Пассивный rc фильтр низких частот первого порядка
- •1.2.2. Простейший пассивный rlc фильтр низких частот
- •1.3. Примеры расчета передаточных функций простейших активных
- •1.3.1. Неинвертирующий усилитель
- •1.3.2. Инвертирующий усилитель
- •1.3.3. Активный инвертирующий интегратор
- •1.4. Введение в реализацию arc биквада
- •1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- •1.5. Введение в концепцию переключаемых конденсаторов
- •1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- •1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- •1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- •1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- •1.5.5. Неинвертирующий пк интегратор с задержкой
- •1.6. Реализация биквада на базе переключаемых конденсаторах
- •1.7. Дискретизация аналогового сигнала. Идеальные выборки
- •1.7.1. Передаточная функция пк интегратора без задержки
- •1.7.2. Передаточная функция пк интегратора с задержкой
- •Модели элементов интегральных схем
- •3. Базовые элементы кмдп операционных усилителей
- •3.1. Простейший усилитель напряжения с общим истоком
- •3.1.1. Простейший усилительный каскад с общим истоком и активной
- •3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- •3.1.3. Частота единичного усиления простейшего усилителя
- •3.1.4. Соотношение малосигнальных параметров простейшего
- •3.1.5. Простейший усилитель в режиме большого сигнала
- •3.1.6. Расчет выходного сопротивления
- •3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- •3.1.8. Пример топологии простейшего усилителя
- •3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- •3.3. Токовое зеркало
- •3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- •3.4. Истоковый повторитель
- •3.4.1. Выходное сопротивление и входная емкость истокового
- •3.5. Метод увеличения выходного сопротивления усилителя
- •3.6. Каскодный усилитель
- •3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- •3.6.2. Роль емкости в выходном узле каскодного усилителя.
- •3.6.3. Диапазон изменения выходного напряжения
- •3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- •3.6.5. Каскодное токовое зеркало
- •3.6.6. Самосмещаемое каскодное токовое зеркало
- •3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- •3.8. Дифференциальный каскад
- •3.8.1. Допустимый диапазон входного синфазного напряжения
- •3.8.2. Дифференциальный каскад как источник тока, управляемый входным напряжением. Несимметричный и симметричный входные сигналы
- •4. Архитектуры кмдп операционных усилителей
- •4.1. Методика оценки малосигнальных характеристик операционного усилителя
- •4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- •4.1.2. Расчет запаса фазы операционного усилителя с действительными
- •4.2. Однокаскадные операционные усилители как операционные
- •4.2.1. «Телескопический» оитун
- •4.2.1.1. Базовые характеристики «телескопического» оитун
- •4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- •4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- •4.2.1.4. Анализ переходных процессов
- •4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- •4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- •4.2.2.2. Режим малого сигнала
- •4.2.2.3. Переходной процесс в режиме большого сигнала
- •4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- •4.3. Двухкаскадный операционный усилитель (оитун)
- •4.3.1. Базовая схема двухкаскадного оитун
- •4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- •4.3.3. Передаточная функция двухкаскадного усилителя
- •4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- •4.3.5. Частота единичного усиления двухкаскадного оитун
- •4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- •4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- •4.3.9. Распространенная архитектура двухкаскадного оитун
- •5. Шум и его анализ в кмдп аналоговых имс
- •5.1. Основные определения
- •5.1.1. Cуммирование шумов
- •5.1.2. Анализ шума в частотной области
- •5.2. Пример расчета шума arc фильтра первого порядка
- •5.2.1. Реакция на шумовой источник тока
- •5.2.2. Реакция на шумовой источник тока
- •5.2.3. Реакция на шумовой источник напряжения
- •5.4. Приведенный ко входу собственный «белый» шум повторителя
- •5.5. Собственный шум многокаскадного усилителя
- •5.6. Шум каскодного усилителя
- •6. Полностью дифференциальные оитун
- •6.1. Базовая архитектура полностью дифференциальных схем
- •6.2. Принципиальные преимущества полностью дифференциальных схем
- •6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- •6.3. Принципиальные недостатки полностью дифференциальных схем
- •6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- •6.4.1. Схема с ограниченным диапазоном входных сигналов.
- •6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- •6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов
5.2. Пример расчета шума arc фильтра первого порядка
На рисунке 5.5 представлены электрическая схема ARC фильтра первого порядка и эквивалентная схема для расчета суммарного шума.
Рис. 5.5. ARC фильтр первого порядка: (а) электрическая схема;
(b) эквивалентная схема для расчета суммарного шума
Пусть для простоты ОУ имеет бесконечное усиление. Тогда передаточная функция фильтра при подаче входного сигнала как на Рис. 5.5.а, т.е. в цепь инвертирующего входа:
(5.22)
Передаточная функция фильтра при подаче входного сигнала на неинвертирующий вход:
(5.23)
Теперь – о правомерности выбранных на Рис. 5.5.в эквивалентных схем шумящих резисторов. Как видно из рисунка, для R1 и Rf выбраны эквивалентные схемы с присоединенными параллельно источниками шумовых токов, а для R2 и для ОУ – присоединенный последовательно источник шумового напряжения. Проблема – в том, что последовательно присоединенный в любом месте источник напряжения как бы разделяет шумящий резистор как целостную систему на части. Последнее в цепях со сквозным прохождением тока может привести к неправильной логике анализа и ошибкам.
Что касается источников шумовых токов, то, присоединенные параллельно, они не нарушают наглядной целостности и симметрии шумящего резистора, поэтому использование именно такого представления в любых цепях с протеканием постоянного тока предпочтительно и удобно. Однако, в цепях с отсутствием протекания постоянного тока, как на неинвертирующем входе КМДП ОУ с практически неопределенно высоким сопротивлением, корректно и достаточно удобно применять источники шумового напряжения.
Рассмотрим реакцию
изображенной на Рис. 5.5.b
схемы фильтра на шумовые источники
(тока и напряжения) в отдельности
(предполагая, что остальные равны нулю).
Затем возведем полученные выходные
напряжения в квадрат, сложим и получим
суммарную спектральную плотность
мощности шума на выходе
.
Далее, для получения полной мощности
шума
на выходе, производится интегрирование
(в интересующих пределах) по частоте
суммарной спектральной плотности шума
с учетом конкретных зависимостей
спектральных плотностей шума от различных
источников шума.
5.2.1. Реакция на шумовой источник тока
Отметим, что на обоих выводах резистора R1 – постоянные потенциалы, равные нулю, и ток через R1 равен нулю.
Уравнение Кирхгофа:
(5.24а)
Получаем:
(5.24b)
Спектральная
плотность шума на выходе от шумового
источника
:
(5.25)
5.2.2. Реакция на шумовой источник тока
По-прежнему учитываем, что ток через R1 равен нулю.
Уравнение Кирхгофа:
(5.26а)
Получаем:
(5.26b)
Спектральная
плотность шума на выходе от шумового
источника
:
(5.27)
Как видно из (5.25) и (5.27), реакция на шумовой источник тока в цепи инвертирующего входа ОУ равна напряжению от протекания этого тока в резисторе в цепи обратной связи, умноженному на коэффициент передачи ARC фильтра без усиления.