- •1. Введение в анализ и синтез базовых узлов линейной обработки
- •1.1. Преобразование Лапласа как метод анализа линейных схем
- •1.2. Примеры расчета передаточных функций некоторых пассивных
- •1.2.1. Пассивный rc фильтр низких частот первого порядка
- •1.2.2. Простейший пассивный rlc фильтр низких частот
- •1.3. Примеры расчета передаточных функций простейших активных
- •1.3.1. Неинвертирующий усилитель
- •1.3.2. Инвертирующий усилитель
- •1.3.3. Активный инвертирующий интегратор
- •1.4. Введение в реализацию arc биквада
- •1.4.1. Принцип масштабирования пассивных элементов в arc фильтрах
- •1.5. Введение в концепцию переключаемых конденсаторов
- •1.5.1. Неинвертирующий переключаемый конденсатор с задержкой,
- •1.5.2. Неинвертирующий переключаемый конденсатор без задержки,
- •1.5.3. Инвертирующий пк интегратор без задержки, не чувствительный
- •1.5.4. Инвертирующий переключаемый конденсатор с задержкой,
- •1.5.5. Неинвертирующий пк интегратор с задержкой
- •1.6. Реализация биквада на базе переключаемых конденсаторах
- •1.7. Дискретизация аналогового сигнала. Идеальные выборки
- •1.7.1. Передаточная функция пк интегратора без задержки
- •1.7.2. Передаточная функция пк интегратора с задержкой
- •Модели элементов интегральных схем
- •3. Базовые элементы кмдп операционных усилителей
- •3.1. Простейший усилитель напряжения с общим истоком
- •3.1.1. Простейший усилительный каскад с общим истоком и активной
- •3.1.2. Малосигнальные характеристики простейшего кмдп усилителя
- •3.1.3. Частота единичного усиления простейшего усилителя
- •3.1.4. Соотношение малосигнальных параметров простейшего
- •3.1.5. Простейший усилитель в режиме большого сигнала
- •3.1.6. Расчет выходного сопротивления
- •3.1.7. Элементарный анализ величины входной емкости. Емкость Миллера
- •3.1.8. Пример топологии простейшего усилителя
- •3.2. Выходное сопротивление и коэффициент передачи каскада с диодом в нагрузке
- •3.3. Токовое зеркало
- •3.3.1. Формирование режимных потенциалов в простейшем усилителе с общим истоком
- •3.4. Истоковый повторитель
- •3.4.1. Выходное сопротивление и входная емкость истокового
- •3.5. Метод увеличения выходного сопротивления усилителя
- •3.6. Каскодный усилитель
- •3.6.1. Передаточная функция простейшего каскодного усилителя с идеальной токовой нагрузкой
- •3.6.2. Роль емкости в выходном узле каскодного усилителя.
- •3.6.3. Диапазон изменения выходного напряжения
- •3.6.4. Схемы формирования постоянного смещения на затворе каскодного транзистора.
- •3.6.5. Каскодное токовое зеркало
- •3.6.6. Самосмещаемое каскодное токовое зеркало
- •3.7. Концепция активного каскодного транзистора (материал для дополнительного изучения подготовленными студентами с использованием периодической литературы)
- •3.8. Дифференциальный каскад
- •3.8.1. Допустимый диапазон входного синфазного напряжения
- •3.8.2. Дифференциальный каскад как источник тока, управляемый входным напряжением. Несимметричный и симметричный входные сигналы
- •4. Архитектуры кмдп операционных усилителей
- •4.1. Методика оценки малосигнальных характеристик операционного усилителя
- •4.1.1. Методика замены нескольких действительных неосновных полюсов в передаточной функции операционного усилителя одним «эффективным» неосновным полюсом
- •4.1.2. Расчет запаса фазы операционного усилителя с действительными
- •4.2. Однокаскадные операционные усилители как операционные
- •4.2.1. «Телескопический» оитун
- •4.2.1.1. Базовые характеристики «телескопического» оитун
- •4.2.1.2. Упрощенная методика расчета фазы в «телескопическом» усилителе
- •4.2.1.3. Оценка частот неосновных полюсов «телескопического» оитун
- •4.2.1.4. Анализ переходных процессов
- •4.2.2. «Согнутый» каскодный оитун с р-канальным входом
- •4.2.2.1. Диапазоны входного синфазного и выходного напряжений
- •4.2.2.2. Режим малого сигнала
- •4.2.2.3. Переходной процесс в режиме большого сигнала
- •4.2.3. «Согнутый» каскодный оитун с n-канальным входом
- •4.3. Двухкаскадный операционный усилитель (оитун)
- •4.3.1. Базовая схема двухкаскадного оитун
- •4.3.2. Эквивалентная малосигнальная схема двухкаскадного усилителя
- •4.3.3. Передаточная функция двухкаскадного усилителя
- •4.3.4. Соотношение частот неосновного полюса, нуля и частоты единичного усиления
- •4.3.5. Частота единичного усиления двухкаскадного оитун
- •4.3.7. Реакция двухкаскадного оитун на большой входной сигнал.
- •4.3.8. Реакция двухкаскадного оитун на большой синусоидальный
- •4.3.9. Распространенная архитектура двухкаскадного оитун
- •5. Шум и его анализ в кмдп аналоговых имс
- •5.1. Основные определения
- •5.1.1. Cуммирование шумов
- •5.1.2. Анализ шума в частотной области
- •5.2. Пример расчета шума arc фильтра первого порядка
- •5.2.1. Реакция на шумовой источник тока
- •5.2.2. Реакция на шумовой источник тока
- •5.2.3. Реакция на шумовой источник напряжения
- •5.4. Приведенный ко входу собственный «белый» шум повторителя
- •5.5. Собственный шум многокаскадного усилителя
- •5.6. Шум каскодного усилителя
- •6. Полностью дифференциальные оитун
- •6.1. Базовая архитектура полностью дифференциальных схем
- •6.2. Принципиальные преимущества полностью дифференциальных схем
- •6.2.1. Зависимость потенциала общего истока дифкаскада от сигнала
- •6.3. Принципиальные недостатки полностью дифференциальных схем
- •6.4. Варианты непрерывных во времени схем синфазной обратной связи (сос).
- •6.4.1. Схема с ограниченным диапазоном входных сигналов.
- •6.4.2. Непрерывная во времени cхема сос с максимальным диапазоном
- •6.4.3. Варианты схем синфазной обратной связи на базе переключаемых конденсаторов
3.8. Дифференциальный каскад
Дифференциальный каскад (часто – «дифкаскад») является тем ключевым устройством, которое позволяет усилителю быть «операционным», т.е. с его помощью проводить математические операции с сигналами. Назначение дифференциального каскада – разрешать операционному усилителю усиливать только дифференциальный сигнал, т.е. разность потенциалов между двумя его входами.
Два самых распространенных типа базовых дифференциальных каскадов с n-канальным входом и р-канальным входом представлены на рис. 3.30а и рис. 3.30b соответственно. Представленные на рис. 3.30 дифкаскады имеют одинаковое функциональное назначение, и тип входных транзисторов влияет лишь на некоторые особенности их конкретного подключения и конкретных характеристик. Рассмотрим принцип функционирования и основные свойства базового дифкаскада с n-канальным входом. Работа дифкаскада с р-канальным входом аналогична, изменяются лишь значения постоянных режимных потенциалов, а знаки переменных составляющих сигналов меняются на противоположные.
Рис. 3.30. Дифференциальные каскады:
(а) с n-канальным входом и (b) с р-канальным входом.
и – входныеNМДП транзисторы с затворами, соединенными к (неинвертирующему входу дифкаскада) и к (инвертирующему входу дифкаскада) соответственно; и– РМДП транзисторы активной нагрузки, объединенные в схеме токового зеркала.
Для всех дифференциальных каскадов справедливы определения:
(3.96а)
(3.96b)
Здесь –входное синфазное напряжение, –входное дифференциальное напряжение.
Ниже перечисляются основные свойства идеального дифкаскада, у которого все значения всех параметров транзисторов в парах одного знака проводимости (и,и) по умолчаниюидентичны.
1. Все транзисторы дифкаскада должны работать в пологом режиме. Поскольку схема базового дифкаскада содержит 3 (три) узла, каждый имеющий свое выходное сопротивление и свою суммарную узловую емкость, то передаточная функция дифкаскад также имеет порядок 3.
2. Характеристики основного полюса определяются свойствами узла , как имеющего самое высокое выходное сопротивление (узел объединениястоков транзисторов и).
3. Характеристики неосновных полюсов определяются свойствами узлов А и В, имеющих низкие малосигнальные выходные сопротивления:
–для узла А, как сопротивление диода на базе транзистора ;
–для узла В, находящемуся в истоках двух транзисторов и.
4. Транзистор с постоянным потенциаломна затворе является генератором постоянного режимного тока(далее, если другое не указано, режимный ток будем считать постоянным при любом напряжении исток-сток транзистора,пока он находится в пологом режиме, т.е. ).
5. Поскольку в идеальном дифкаскаде все значения всех параметров в парах транзисторов одного знака проводимости (–и–)по умолчанию идентичны, то из условия симметрии следует, что при любых одинаковых потенциалах (в некотором допустимом интервале изменения , в которомвсе транзисторы находятся в пологом режиме) затворов транзисторов и(т.е.) токи в ниходинаковы.
6. Пусть , но входной синфазный потенциализменяется в тех пределах, пока транзистор, как генератор режимного тока, находится в пологой области ВАХ (). Пусть при этом, как упоминалось выше,. В этом случае:
(А) токи в парных транзисторах иодинаковы (см. выше);
(Б) генерируемый в , течет также в, т.е.;
(В) транзисторы исоставляют токовое зеркало, следовательно
;
(Г) вследствие свойств (А) и (Б) , ноодинаковость постоянных составляющих токов в парных однотипных транзисторах подразумевает также одинаковость постоянных составляющих напряжений на их симметричных выводах, откуда следует, что
при и любом, пока, имеем. (3.97)