
- •Прикладная механика Учебное пособие
- •Прикладная механика
- •Введение
- •1.Основные понятия и аксиомы статики твердого тела
- •1.1.Основные понятия и определения
- •1.2.Аксиомы статики
- •1.3.Основные типы реакций связей
- •1.4.Система сходящихся сил
- •1.5.Момент силы относительно точки и оси
- •2.Плоская система сил
- •2.1.Различные формы условий равновесия плоской системы сил
- •2.2.Центр параллельных сил
- •2.3.Центр тяжести. Определение координат центра тяжести плоских фигур
- •3.Кинематика точки и твердого тела
- •3.1.Способы задания движения точки
- •3.1.1.Естественный способ задания движения точки
- •3.1.2.Координатный способ задания движения точки
- •3.2.Простейшие движения твердого тела
- •3.2.1.Поступательное движение
- •3.2.2.Вращательное движение
- •4.Сложное движение
- •4.1.Сложное движение точки
- •4.1.1.Относительное, переносное и абсолютное движение
- •4.1.2.Теорема о скорости точки в сложном движении
- •4.1.3.Плоскопараллельное движение твердого тела
- •4.1.4.Разложение плоскопараллельного движения на поступательное и вращательное
- •4.1.5.Скорость точки плоской фигуры
- •4.1.6.Мгновенный центр скоростей и распределение скоростей точек плоской фигуры
- •5.Дифференциальные уравнения и основные задачи динамики материальной точки
- •5.1.Основные положения динамики. Аксиомы динамики
- •5.2.Дифференциальные уравнения движения материальной точки
- •5.3.Две основные задачи динамики точки
- •6.Динамика относительного движения материальной точки
- •6.1.Динамические дифференциальные уравнения относительного движения материальной точки
- •6.2.Частные случаи динамической теоремы Кориолиса
- •7.Динамика твердого тела
- •7.1.Понятие о механической системе
- •7.2.Принцип Даламбера
- •7.3.Основное уравнение динамики вращающегося тела
- •7.4.Моменты инерции простейших однородных тел
- •8.Элементы аналитической механики
- •8.1.Обобщенные координаты
- •8.2.Возможные перемещения
- •8.3.Принцип возможных перемещений
- •9.Основы теории колебаний, теории удара
- •9.1.Устойчивость положения равновесия
- •9.2.Колебания системы с одной степенью свободы
- •9.3.Общие положения теории удара
- •10.Задачи сопротивления материалов
- •10.1.Основные допущения
- •10.2.Напряжения
- •10.3.Перемещения и деформации. Закон Гука
- •11.Растяжение и сжатие.
- •11.1.Диаграмма растяжения.
- •11.2.Методы расчета строительных конструкций.
- •12.Геометрические характеристики плоских сечений
- •12.1.Моменты инерции сечения
- •12.2.Момент инерции при параллельном переносе осей
- •13.Изгиб и кручение стержней
- •13.1.Расчеты на прочность при кручении стержней. Крутящий момент. Построение эпюр
- •13.2.Расчеты на прочность при изгибе стержней
- •Примеры
- •14.Устойчивость сжатых стержней
- •14.1.Основные понятия
- •14.2.Формула Эйлера для критической силы
- •14.3.Влияние способа закрепления концов стержня на значение критической силы
- •14.4.Практический расчет сжатых стержней
- •15.Теория тонких пластин
- •15.1.Основные понятия и гипотезы
- •15.2.Соотношения между деформациями и перемещениями
- •15.3.Напряжения и усилия в пластинке
- •15.4.Усилия в пластинке
- •15.5.Дифференциальное уравнение изогнутой поверхности пластинки
- •16.Прочность материалов при циклически меняющихся напряжениях
- •16.1.Понятие об усталостном разрушении материала и его причины
- •16.2.Характеристики циклов напряжений
- •16.3.Предел выносливости
- •16.4.Факторы, влияющие на усталостную прочность материала
- •17.Проблемы теории механизмов и машин
- •17.1.Кинематические пары и кинематические цепи
- •17.2.Структура и кинематика плоских механизмов
- •18.Структурное исследование механизмов
- •18.1.Степень подвижности механизма
- •18.2.Классификация механизмов
- •19.Кинематическое исследование плоских стержневых механизмов
- •19.1.Методы исследования
- •19.1.1.Графический метод кинематического исследования механизмов
- •19.1.2.Определение скоростей и ускорений точек звеньев методом планов
- •19.1.3.Свойство планов скоростей
- •19.1.4. Построение плана скоростей и ускорений кулисного механизма
- •20.Механизмы с высшими парами. Зубчатые механизмы
- •20.1.Зубчатые передачи
- •20.1.1.Общие сведения. Основная теорема зацепления.
- •20.1.2.Геометрические элементы зубчатых колес
- •21.Кулачковые механизмы
- •21.1.Виды кулачковых механизмов
- •21.2.Проектирование кулачковых механизмов
- •22.Методика силового расчета механизмов
- •22.1.Методы силового исследования механизмов
- •22.1.1.Силы, действующие на звенья механизма
- •22.1.2.Силы инерции звена, совершающего возвратно-поступательное движение
- •22.1.3. Силы инерции звена, совершающего вращательное движение вокруг неподвижной оси (рис. 20.2)
- •22.1.4.Силы инерции звена, совершающего плоско-параллельное движение (рис. 20.3)
- •22.2.Определение реакций в кинематических парах групп Ассура
- •22.2.1.Силовой расчет начального звена (рис. 20.4, а)
- •23.Динамика машинного агрегата
- •23.1.Кинетическая энергия механизма
- •23.2.Приведение масс и сил
- •23.3.Режимы работы машин
- •23.4.Уравнение движения механизма
- •24.Детали машин и механизмов
- •24.1.Общие сведения о проектировании деталей машин
- •24.2.Виды нагрузок, действующих на детали машин
- •24.3.Основные сведения о проектировании и конструировании
- •24.4.Стадии разработки конструкторской документации
- •25.Зубчатые механизмы
- •25.1.Классификация зубчатых передач
- •25.2.Виды разрушения зубьев. Критерии работоспособности и расчета
- •25.3.Расчет основных геометрических параметров цилиндрических прямозубых колес
- •25.4.Расчет зубьев цилиндрических прямозубых зубчатых колес на изгиб
- •25.5.Расчет зубьев цилиндрических зубчатых колес на контактную прочность
- •26.Конические зубчатые передачи
- •27.Общие сведения о разъемных и неразъемных соединениях
- •27.1.Неразъемные соединения
- •27.2.Разъемные соединения
- •27.2.1.Шпоночные и шлицевые соединения
- •28.Допуски и посадки
- •28.1.Взаимозаменяемость и технологичность деталей машин
- •29.Надежность деталей машин и механизмов. Основные понятия теории надежности
- •30.Оси и валы
- •30.1.Общие сведения
- •30.2.Проектный расчет валов и осей
- •30.2.1.Составление расчетных схем
- •30.2.2.Расчёт опасного сечения
- •30.3.Проверочные расчеты валов и осей
- •30.3.1.Расчет на выносливость валов и вращающихся осей
- •30.3.2.Расчет валов и неподвижных осей на статическую прочность
- •30.4.Проверочный расчет валов и осей на жесткость
- •31.Подшипники, муфты
- •31.1.Подшипники
- •31.1.1.Подшипники скольжения
- •31.1.2.Подшипники качения
- •32.Муфты
- •32.1. Назначение и классификация
- •32.2. Постоянные муфты
- •32.3.Управляемые муфты
- •32.4.Самоуправляемые муфты
- •Заключение
- •Библиографический список
- •3 94026 Воронеж, Московский просп., 14
5.Дифференциальные уравнения и основные задачи динамики материальной точки
5.1.Основные положения динамики. Аксиомы динамики
В динамике механическое движение рассматривается не только с точки зрения геометрических форм движения, но и выясняются факторы, вызывающие те или иные виды движений. Динамика изучает движение материальных тел под действием сил.
В основе динамики лежат следующие аксиомы.
Аксиома 1 (принцип инерции). Всякая изолированная материальная точка находится в состоянии покоя или равномерного и прямолинейного движения, пока приложенные силы не выведут ее из этого состояния.
Принцип инерции лежит в основе статики и динамики потому, что содержит в себе как аксиому инерции покоя (статика), так и аксиому инерции движения (динамика). Таким образом, если на материальное тело (точку) не действуют никакие силы или действует уравновешенная система сил (Fk=0, Mo(F)=0), то относительно неподвижной (инерциальной ) системы отсчета скорость тела (точки) v=const. Но при v=0 имеем состояние покоя, а при v0 (точка движется равномерно и прямолинейно) – состояние динамического равновесия.
Из первой аксиомы следует, что вывести материальную точку из состояния инерции может только приложенная сила, но из кинематики известно, что начало движения материальной точки из состояния покоя либо нарушение ее прямолинейного или равномерного движения связано с возникновением ускорения. Зависимость между внешней силой, действующей на материальную точку, и возникшим вследствие этого ускорением устанавливает аксиома 2.
Аксиома 2 (основной закон динамики). Ускорение материальной точки пропорционально действующей силе и направлено по линии, вдоль которой действует эта сила
F=ma.
На все материальные тела вблизи Земли действует сила тяжести G и при свободном падении на Землю тела любой массы m приобретают одно и тоже ускорение g, которое называется ускорением свободного падения. Для свободно падающего тела можно записать:
G=mg.
Значение силы тяжести тела в ньютонах равно произведению его массы на ускорение свободного падения.
Аксиома 3 (закон независимости действия сил). Если к материальной точке приложена система сил, то движение этой точки складывается из тех движений, которые точка могла бы иметь под действием каждой силы в отдельности.
Таким образом, при одновременном действии на материальную точку массой m, например, четырех сил (рис. 5.1) ускорение a , полученное точкой, можно определить, геометрически сложив ускорения a1, a2, a3, a4, возникшие под действием каждой силы в отдельности. В то же время ускорение a пропорционально равнодействующей F тех же сил:
F=ma,
где F=Fk и a=ak .
Аксиома 4 (закон действия и противодействия). Две материальные точки действуют друг на друга с силами, равными по модулю и направленными в противоположные стороны.
Силы взаимодействия между двумя материальными точками не уравновешивают друг друга, так как одна сила приложена к одной точке, а вторая к другой. Согласно аксиоме 2, каждая из этих сил сообщает ускорение той материальной точке, на которую действует. Таким образом, все ускорения материальных точек относительно неподвижной (инерциальной) системы отсчета есть результат взаимодействия материальных точек, а в общем случае – результат взаимодействия материальных тел.
Рис. 5.27
Материальная точка, движение которой в пространстве не ограничено наложенными связями, называется свободной.
Используя основной закон динамики, можно вывести дифференциальные уравнения движения материальной точки в различных системах координат. По аксиоме о связях и силах реакций связей можно получить дифференциальные уравнения движения и несвободной точки так же, как и для свободной, только ко всем приложенным к точке силам надо добавить силы реакций связей.