
- •1. Биохимия - молекулярная логика живых организмов. Состав живой материи
- •1.1. Химическая организация клетки. Основные классы биомолекул, общие принципы их строения
- •1.2. Строение и функции клетки эукариотов и прокариотов. Внутриклеточные органеллы.
- •1.3. Особенности организации биосинтетических процессов в клетках прокариот и эукариот
- •2. Аминокислоты и белки
- •Строение и классификация аминокислот
- •Стереоизомерия.
- •Кислотно-основные свойства аминокислот
- •2.2. Пептиды. Строение пептидов. Особенности пептидной связи.
- •2.3. Белки и их основные признаки. Классификации белков. Биологические функции белков и пептидов (ферменты, гормоны, транспортные белки, структурные белки, иммуноглобулины, рецепторы).
- •Классификация белков
- •Биологические функции белков
- •Пространственное расположение полипептидных цепей (Конформация пептидных цепей в белках)
- •2.6.Четвертичная структура белка. Свойства олигомерных белков. Роль четвертичной структуры в проявлении определенных функций белка.
- •К инетика оксигенирования миоглобина и гемоглобина
- •Транспорт двуокиси углерода
- •Молекулярная основа эффекта Бора
- •Регуляция 2,3-бисфосфоглицератом
- •Изофункциональные белки
- •3.Биологический катализ. Ферменты.
- •Особенности ферментов как биокатализаторов
- •Ферменты
- •Принципы построения рабочего названия фермента
- •Список ферментов
- •Механизм действия ферментов. Активный центр ферментов
- •Механизм действия ферментов (на примере фермента холинэстеразы)
- •Причины высокой каталитической активности.
- •3.2.Субстратная специфичность. Специфичность пути превращения.
- •Специфичность пути превращения
- •6.2. Линеризация уравнения Михаэлиса-Ментен
- •Зависимость скорости ферментативной реакции от температуры
- •Зависимость скорости ферментативной реакции от рН
- •Обратимое конкурентное ингибирование аналогами субстрата
- •Обратимое неконкурентное ингибирование
- •Необратимое ингибирование
- •Регуляция количества фермента путем регуляции скорости его синтеза и распада
- •Превращение ферментов в активные формы
- •Регуляция активности ферментов путем их ковалентной модификации
- •Регуляция белковыми ингибиторами
- •Аллостерическая регуляция
- •Ингибирование по принципу обратной связи
- •4. Строение, состав и физиологическая роль клеточной стенки и цитоплазматической мембраны.
- •Функции мембран
- •Мембранные липиды. Образование липидного бислоя мембран.
- •Мембранные белки. Жидко-мозаичное строение мембран
- •Функции мембранных гликолипидов, гликопротеинов, белков:
- •Свойства биологических мембран
- •Пассивный транспорт
- •Активный транспорт
- •Экзо- и эндоцитоз
- •Системы унипорта, симпорта и антипорта
- •4.3. Строение клеточной стенки грамположительных и грамотрицательных бактерий.
- •5. Пути и механизмы преобразования энергии в живых системах
- •5.1. Метаболизм. Катаболизм и анаболизм
- •Макроэргические соединения
- •Фазы освобождения энергии из питательных веществ
- •Роль высокоэнергетических фосфатов в улавливании энергии. Субстратное и окислительное фосфорилирование
- •Организация дыхательной цепи в митохондриях
- •Механизм сопряжения окисления и фосфорилирования
- •Строение атф-синтазы и синтез атф
- •Коэффициент окислительного фосфорилирования
- •Дыхательный контроль
- •Энергетический обмен и теплопродукция
- •5.4. Фотосинтез и хемосинтез. Фотосинтез
- •Световая стадия фотосинтеза
- •Механизм световой фазы фотосинтеза
- •Темновая фаза фотосинтеза
- •Хемосинтез
- •6. Основные метаболические пути углеводов.
- •6.1. Общая схема превращения глюкозы. Метаболизм глюкозы в печени
- •Энергетический выход аэробного распада глюкозы
- •6.3. Пентозфосфатный путь.
- •Биосинтез глюкозы (глюконеогенез)
- •Субстраты для глюконеогенеза
- •Биосинтез гликогена (гликогенез)
- •Распад гликогена (гликогенолиз)
- •П ревращение в жирные кислоты и холестерол
- •6.4. Брожение.
- •6.5. Биосинтез глюкозы. Обходные пути глюконеогенеза. Биосинтез глюкозы (глюконеогенез)
- •Субстраты для глюконеогенеза
- •Биосинтез гликогена (гликогенез)
- •Распад гликогена (гликогенолиз)
- •П ревращение в жирные кислоты и холестерол
- •6.6. Биосинтез глюкозы из двухуглеродных соединений (глиоксилатный цикл).
- •7. Обмен липидов.
- •7.1. Катаболизм глицерина.
- •Окисление до со2 и образование атф
- •7.3. Биосинтез липидов.
- •8. Обмен белков
- •8.1. Общая схема метаболизма аминокислот. Механизмы транспорта аминокислот в клетку. Метаболизм аминокислот в печени
- •8.2. Дезаминирование аминокислот: окислительное дезаминирование, трансаминирование, непрямое дезаминирование (трансдезаминирование).
- •8.3. Превращения углеродного скелета аминокислот. Кетогенные и гликогенные аминокислоты.
- •8.4. Декарбоксилирование аминокислот. Биогенные амины.
- •8.5. Азотфиксация.
- •8.6. Биосинтез заменимых и незаменимых аминокислот.
- •9. Вторичные метаболиты бактерий и растений
- •Библиография
Хемосинтез
Для существования микроорганизмам необходимы источники углерода и энергии. Прокариоты могут существовать только в аэробных или только в анаэробных условиях, или и в тех и в других. Необходимую энергию они получают в процессе дыхания, брожения или фотосинтеза. Эти процессы с точки зрения химии являются окислительно-восстановительными реакциями. По типу метаболизма микроорганизмы бывают:
Группы микроорганизмов |
Источник энергии |
Источник электронов |
Источник углерода |
Фотолитоавтотрофы |
Солнечный свет |
Неорганическое вещество |
Неорганическое вещество |
Фотолитогетеротрофы |
Солнечный свет |
Неорганическое вещество |
Органическое вещество |
Фотоорганоавтотрофы |
Солнечный свет |
Органическое вещество |
Неорганическое вещество |
Фотоорганогетеротрофы |
Солнечный свет |
Органическое вещество |
Органическое вещество |
Хемолитоавтотрофы |
Химические связи |
Неорганическое вещество |
Неорганическое вещество |
Хемолитогетеротрофы |
Химические связи |
Неорганическое вещество |
Органическое вещество |
Хемоорганоавтотрофы |
Химические связи |
Органическое вещество |
Неорганическое вещество |
Хемоорганогетеротрофы |
Химические связи |
Органическое вещество |
Органическое вещество |
Рассмотрим протекание окислительно-восстановительных реакций в группе хемолитотрофов. Эти прокариоты немногочисленны по видовому составу, но широко распространены в природе (в основном в морях и почве) и играют исключительно важную роль в экосистемах и биосфере.
Напомним, что окислительно-восстановительные реакции представляют собой процессы переноса электронов от донора (восстановителя) к акцептору (окислителю). Донорами электронов в окислительно-восстановительных процессах, осуществляемых хемолитотрофами, могут служить некоторые неорганические соединения (например, H2S, NO2, NH3, Fe2+), а также молекулярный водород Н2 и сера S. Хемолитотрофы способны создавать необходимые им в качестве пищи органические вещества, используя энергию, выделяющуюся при окислении указанных неорганических соединений. Поэтому их называют также хемосинтезирующими бактериями. Сам процесс «бессолнечного» синтеза органических веществ, осуществляемый этими микроорганизмами, получил название хемосинтеза. Его открыл в 1887 году русский микробиолог С.Н. Виноградский (1856–1953 г.).
Существуют бактерии, называемые хемотрофы. Углерод эти бактерии получают из углекислого газа, поступающего в клетки из окружающей среды, а в качестве источника энергии они используют энергию протекающих в их клетках химических реакций окисления различных неорганических соединений. Такой способ получения энергии и образования органических веществ называют хемосинтезом.
Среди хемосинтетиков следует назвать железобактерии, бактерии, окисляющие водород и монооксид углерода, серобактерии, азотфиксирующие бактерии, нитрификаторы и денитрификаторы, метанобразующие бактерии и некоторые другие.
В основе жизнедеятельности железобактерий лежит окисление двухвалентного железа в трёхвалентное. Например, бактерии рода лептотрикс (Leptothrix) черпают энергию из следующего процесса:
4FeCO3 + O2+ 6H2O = 4Fe(OH)3+ 4CO2 + E
Молекулярный водород, образующийся в результате ряда процессов (вулканическая деятельность, электрохимическая коррозия металлов, восстановление протонов и т.д.), способны окислять кислородом бактерии из родов гидрогемонас (Hydrogemonas), псевдомонас (Pseudomonas) и др.
2H2 + O2 = 2H2O + 474 кДж
Некоторые бактерии окисляют монооксид углерода до диоксида.
2CO + O2 = 2CO2 + 514 кДж
Элементарную серу, а также сульфиды, тиосульфаты и сульфиты окисляют до сульфатов бактерии рода тиобациллюс (Thiobacillus):
2S + 3O2 + 2H2O = 2H2SO4 + Е
Деятельность серобактерий – одна из основных движущих сил круговорота (биогеохимического цикла) серы в биосфере.
Нитрифицирующие бактерии окисляют в две стадии аммиак до азотной кислоты. Первую стадию осуществляют бактерии рода нитрозомонас (Nitrozomonas):
2NH3 + 3O2 = 2HNO3 + 2H2O + 660кДж
Азотистую кислоту окисляет до азотной кислоты нитробактер (Nitrobacter):
2HNO2 + O2 = 2HNO3 + 158 кДж
Процессы нитрификации занимают центральное место в круговороте азота в биосфере. Их интенсивность свидетельствует о степени завершённости процессов минерализации в экосистемах.
Все перечисленные выше группы хемолитотрофов в качестве конечного акцептора электронов (и водорода) используют молекулярный кислород. Это так называемые аэробы.
Существуют хемолитотрофы, которые в качестве окислителей могут использовать не только кислород, но и некоторые неорганические соединения, например нитраты или сульфаты. Это – анаэробы. Рассмотрим несколько примеров окислительно-восстановительных процессов, осуществляемых анаэробами.
Нитраты в качестве окислителя использует, например, кишечная палочка (Echerichia coli), вследствие чего она может существовать в анаэробных условиях:
HNO3 + H2 = HNO2 + H2O
Серобактерии в анаэробных условиях используют в качестве окислителя серы нитрат-ион:
5S + 6HNO3 + 2H2O = 5H2SO4 + 3N2 + 109,2 кДж
Бактерии Micrococcus denitrificans для восстановления нитратов используют молекулярный водород:
2HNO3 + 5H2 = N2 + 6H2O + 1120 кДж
Реакции денитрификации, замыкающие цикл азота в биосфере, показывают, как молекулярный азот возвращается в атмосферу. Бактерии рода десульфовибрио (Desulfovibrio) получают энергию, используя в качестве окислителя сульфат-ионы:
H2SO4 + 4H2 = H2S + 4H2O + 154 кДж
Этот процесс в природе имеет немаловажное значение. Благодаря нему в толщах морей и океанов формируются слои, содержащие в больших количествах сероводород (например в Чёрном море). Метанобразующие бактерии способны превращать углекислый газ в метан.
CO2 + 4H2 = CH4 + 2H2O + 131 кДж
Ежегодно около 8 млрд. тонн метана образуется именно этим путём. Эти бактерии используют для получения биогаза из различных органических отходов, а также в очистных сооружениях. Интересно отметить, что одним из главных источников биогенного метана считается разведение крупного рогатого скота, в желудке которого (рубце) обитают метанобразующие бактерии.
Жизнедеятельность некоторых хемотрофов может создавать и серьёзные экологические проблемы. Так, в результате деятельности Thiobacillus ferrooxidans, окисляющих ферросульфид (минерал пирит), в значительных количествах образуется серная кислота. Вода, вытекающая из заброшенных железорудных шахт, может иметь рН<2 и тем самым создавать угрозу кислотного загрязнения близлежащих водоёмов.
Нужно подчеркнуть, что главная роль хемотрофов заключается в том, что они представляют собой важнейшее связующее звено в общей системе функционирования биосферы.