- •Гидравлика
- •Сведения из истории гидравлики в пгупс.
- •1 Введение в гидравлику
- •1.1 Определение науки «Гидравлика».
- •1.2 Жидкость.
- •1.3. Понятия реальной и идеальной жидкости. Вязкость.
- •1.4. Основные физические свойства реальных жидкостей.
- •1.4.1. Плотность жидкости ρ, вес единицы объёма γ.
- •1.4.2. Сжимаемость жидкости.
- •1.4.3. Расширение жидкости в связи с изменением температуры.
- •1.4.4. Сопротивление жидкости растягивающим усилиям.
- •1.5. Силы, действующие на жидкость. Напряженное состояние жидкости.
- •Гидростатика.
- •1.6. Гидростатическое давление и его свойства.
- •1.7. Дифференциальные уравнения покоя жидкости.
- •1.8 Интегрирование дифференциальных уравнений покоя (равновесия) жидкости.
- •1.9 Величина гидростатического давления в случае жидкости, находящейся под действием только одной объёмной силы – силы тяжести.
- •1.10 Вакуум
- •1.11 Статика газов
- •1.11.1 Уравнения состояния газов
- •1.11.2 Распределение давления газа по высоте
- •1.11.3 Распределение температуры газа по высоте
- •1.12 Относительный покой жидкости.
- •1.12.1 Свободная поверхность жидкости при равноускоренном или равнозамедленном прямолинейном движении.
- •1.12.2 Определение величины гидростатического давления.
- •1.13 Сила гидростатического давления, действующая на плоскую фигуру любой формы.
- •1.13.1 Сила pа
- •1.13.2. Положение центра давления.
- •1.14 Сила гидростатического давления, действующая на плоские прямоугольные фигуры.
- •1.15 Сила гидростатического давления, действующая на цилиндрические поверхности.
- •1.15.1 Первый случай цилиндрической поверхности.
- •1.15.2 Второй случай цилиндрической поверхности (вертикаль cc’ лежит внутри жидкости).
- •1.15.3 Третий случай цилиндрической поверхности.
- •1.16 Равновесие плавающих тел. Закон Архимеда.
- •1.17 Плавучесть тела и условия её обеспечения.
- •1.18 Остойчивость плавающего тела.
- •2. Основы технической гидродинамики.
- •2.1 Линия тока
- •2.2 Параллельноструйное, плавно изменяющееся и резко изменяющееся движения жидкости. Живое сечение, расход, средняя скорость и эпюра скоростей.
- •2.3 Неравномерное и равномерное, напорное и безнапорное движения жидкости.
- •2.4.1 Случай резко изменяющегося движения жидкости.
- •2.4.2. Случай плавно изменяющегося и параллельноструйного движений жидкости.
- •2.4.3 Уравнение неразрывности для газов
- •2.5 Уравнения Эйлера движения невязкой (идеальной) жидкости.
- •2.6 Интеграл Бернулли.
- •2.7 Уравнение Бернулли для идеальной несжимаемой жидкости.
- •2.8. О распределении давления в живых сечениях потока при параллельноструйном и плавно изменяющемся движениях жидкости.
- •2.9.1 Влияние неравномерности распределения скоростей u по плоскому живому сечению на количество движения (кд) массы м.
- •2.9.2. Влияние неравномерности распределения скоростей u по плоскому живому сечению на кинетическую энергию (кэ) массы м.
- •2.10 Уравнение Бернулли для целого потока реальной (вязкой) жидкости при установившемся движении.
- •2.11 Уравнение Бернулли для газов.
- •2.12 Гидравлическое уравнение количества движения для установившегося движения реальной жидкости.
- •2.13 Два режима движения реальной жидкости.
- •3. Потери напора при установившемся движении жидкости.
- •3.1 Общие указания о потерях напора. Гидравлические сопротивления.
- •3.2 Основное уравнение установившегося равномерного движения жидкости для «правильных» русел. Работа сил внутреннего трения.
- •3.3 Законы внутреннего трения в жидкости. Величина касательных напряжений трения при ламинарном движении жидкости.
- •3.4 Распределение скоростей u по живому сечению при ламинарном равномерном установившемся движении жидкости.
- •3.5 Формула Пуазейля для расхода q в круглоцилиндрической трубе. Потеря напора по длине при ламинарном равномерном установившемся движении жидкости.
- •3.6 Уравнения Навье-Стокса движения вязкой жидкости.
- •3.7 Пример точного решения уравнений Навье-Стокса.
- •4 Уравнения Рейнольдса.
- •4.1 Принципы осреднения актуальных (истинных) движений при турбулентном режиме. Пульсационные добавки.
- •4.2 Уравнения движения при турбулентном режиме потока.
- •5 Потеря напора при установившемся равномерном движении жидкости.
- •5.1 Коэффициент гидравлического трения.
- •5.2 Потери напора по длине при турбулентном установившемся равномерном движении жидкости для квадратичной области сопротивления.
- •6 Местные потери напора при турбулентном напорном установившемся движении жидкости.
- •6.1 Потери напора при резком расширении напорного трубопровода (формула Борда).
- •6.2 Остальные случаи местных потерь напора. Общая формула Вейсбаха.
- •6.3 Гидравлический расчет коротких трубопроводов.
- •6.4 Всасывающая труба насоса.
- •6.5 Гидравлический расчет длинных трубопроводов.
- •6.6 Расчёт трубопроводов для газов.
- •6.6.1 Расчет при малых перепадах давления.
- •6.6.2 Расчёт газопроводов при больших перепадах давления.
- •6.6.3 Гидравлический расчёт вытяжной дымовой трубы.
- •6.7 Понятие о гидравлическом ударе в трубопроводах
- •7 Истечение жидкости из отверстий и насадков.
- •7.1 Истечение из малого отверстия в атмосферу при постоянном напоре.
- •7.2 Траектория струи.
- •6.3 Истечение жидкости из насадков при постоянном напоре.
- •6.3.1 Внешний круглоцилиндрический насадок (насадок Вентури).
- •6.3.2 Внутренний круглоцилиндрический насадок (насадок Борда).
- •7.4 Истечение жидкости из отверстия в атмосферу при переменном напоре.
- •8 Равномерное безнапорное установившееся движение воды в открытых каналах.
- •8.1 Гидравлические элементы живого сечения потока в канале.
- •8.2 Гидравлически наивыгоднейший поперечный профиль трапецеидального канала.
- •8.3 Основные задачи при расчёте трапецеидальных каналов на равномерное движение.
- •8.4 Ограничение скоростей движения воды при расчёте каналов. Перепады.
- •1. Мероприятия по увеличению скорости .
- •2. Мероприятия по уменьшению скорости .
- •8.5 Расчёт каналов, имеющих замкнутый поперечный профиль.
- •1. Канализационные трубы.
- •9 Неравномерное безнапорное установившееся движение воды в каналах и естественных руслах.
- •9.1 Предварительные указания.
- •9.2 Основное дифференциальное уравнение неравномерного движения воды.
- •9.3 Второй вид дифференциального уравнения неравномерного движения воды.
- •9.4 Второй вид дифференциального уравнения неравномерного движения воды для случая цилиндрических русел.
- •9.5 Четыре вспомогательных понятия: удельная энергия сечения, критическая глубина, нормальная глубина, критический уклон.
- •9.6 Спокойное, бурное и критическое состояния потока.
- •9.7. Исследование форм (видов) кривой свободной поверхности потока в случае неравномерного плавно изменяющегося движения воды в цилиндрическом русле.
- •9.8 Построение кривой свободной поверхности потока по уравнению Бернулли методом конечных разностей (способ Чарномского)
- •10 Гидравлический прыжок и послепрыжковый участок.
- •10.1 Общие указания. Послепрыжковый участок.
- •10.2 Основное уравнение гидравлического прыжка.
- •10.3 Прыжковая функция. Определение одной из сопряжённых глубин по заданной другой сопряжённой глубине.
- •10.4 Основное уравнение прыжка в прямоугольном цилиндрическом русле.
- •10.5 Длина свободного прыжка в прямоугольном горизонтальном русле. Потери энергии в прыжке.
- •10.6 Особые виды гидравлического прыжка.
- •11 Водосливы
- •11.1 Терминология и классификация водосливов
- •11.2 Основная расчётная формула для прямоугольного водослива
- •11.3 Свободное истечение через неподтопленный прямоугольный водослив с вертикальной стенкой
- •11.4. Неподтопленный водослив с широким порогом
- •11.5 Критерий подтопления водослива с широким порогом
- •12 Сопряжение бьефов при устройстве плотин
- •12.1 Типы сопряжения бьефов
- •12.2. Гасители энергии потока
- •13. Плавно изменяющееся установившееся безнапорное движение грунтовой воды
- •13.1 Основные понятия
- •13.2 Ламинарная и турбулентная фильтрация
- •Значения коэффициента формы частиц крупнозернистых материалов
- •Величина коэффициента c0
- •13.3 Формула Дарси
- •13.4 Основное уравнение плавно изменяющегося безнапорного движения грунтовой воды (формула Дюпюи)
- •13.5 Определение коэффициента фильтрации в лабораторных условиях
- •13.6 Дифференциальное уравнение неравномерного плавно изменяющегося движения грунтовых вод в цилиндрическом русле
- •13.7 Интегрирование дифференциального уравнения неравномерного плавно изменяющегося движения грунтовой воды
- •13.8 Приток воды к совершенной водосборной галерее
- •Величины Jср среднего уклона кривой депрессии
- •13.9 Приток грунтовой воды к круглому совершенному колодцу
- •13.10 Фильтрация воды через однородную земляную дамбу
- •14. Основы физического моделирования гидравлических явлений
- •14.1 Общие сведения
- •14.2 Понятие о подобии гидравлических явлений
- •14.3 Критерии динамического подобия
- •14.3.1 Случай, когда на жидкость действуют только силы тяжести
- •14.3.2 Случай, когда на жидкость действуют только силы трения (вязкости)
- •14.3.3 Критерии подобия, выраженные через среднюю скорость
- •.3.4 Общий случай, когда на жидкость одновременно действуют несколько разных систем сил
- •14.4 Основные указания для моделирования гидравлических явлений
- •Требуемое для достижения динамического подобия отношение характеристики модели к соответствующей характеристике натуры
- •14.5. Пересчет модельных данных на натуру
- •1. Предмет гидрологии. Круговорот воды.
- •2. Основные элементы речных систем
- •3. Тип питания рек. Фазы водного режима.
- •4. Факторы стока воды.
- •5. Режим уровней воды в водотоках.
- •6. Ледовый режим рек
- •7. Закономерности движения воды в реках
- •8. Режим твердого стока
- •9. Русловой процесс
- •10. Инженерная гидрометрия
- •Список литературы
6.7 Понятие о гидравлическом ударе в трубопроводах
Гидравлическим ударом называется повышение или понижение гидромеханического давления в напорном трубопроводе, вызванное изменением во времени (в каком-либо сечении трубопровода) средней скорости движения жидкости. Точнее говоря, гидравлический удар представляет собой колебательный процесс, возникающий в упругом трубопроводе с капельной жидкостью при внезапном изменении её скорости. Этот процесс является очень быстротечным и характеризуется чередованием резких повышений и понижений давления. Изменение давления при этом тесно связано с упругими деформациями жидкости и стенок трубопровода. Теоретическое и экспериментальное исследование гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским в 1898 году.
Пусть
в конце трубы, по которой жидкость
движется со скоростью
,
произведено мгновенное закрытие крана.
Тогда скорость частиц жидкости,
натолкнувшихся на кран будет погашена,
а их кинетическая энергия перейдёт в
работу деформации стенок трубы и
жидкости. При этом стенки трубы
растягиваются, а жидкость сжимается в
соответствии с повышением давления
.
На заторможенные частицы у крана набегают
другие, которые тоже теряют скорость,
в результате чего сечение n-n
(крайнее сечение, в котором жидкость
уже остановилась) перемещается вправо
со скоростью «с»,
называемой скоростью ударной волны.
Сама же переходная область, в которой
давление изменяется на величину
,
называется ударной волной. Когда ударная
волна переместится до резервуара,
жидкость окажется остановленной и
сжатой во всей трубе, а стенки трубы
растянутыми. Ударное повышение давления
распределится на всю трубу. Но такое
состояние не является равновесным. Под
действием перепада давления
частицы жидкости устремятся из трубы
в резервуар. Теперь сечение n-n
перемещается в обратном направлении –
к крану – с той же скоростью с,
оставляя за собой выровненное давление.
Жидкость и стенки предполагаются
упругими, поэтому они возвращаются к
прежнему состоянию, соответствующему
давлению
.
Работа деформации полностью переходит
в кинетическую энергию, и жидкость в
трубе приобретает первоначальную
скорость
,
но направленную теперь в противоположную
сторону. С этой скоростью «жидкая
колонна» (см. рис. 6.11, г) стремится
оторваться от крана, в результате
возникает отрицательная ударная волна
под давлением
,
которая направляется от крана к резервуару
со скоростью с,
оставляя за собой сжавшиеся стенки
трубы и расширившуюся жидкость, что
обусловлено снижением давления (рис.
6.11, д). Кинетическая энергия жидкости
вновь переходит в работу деформаций,
но противоположного знака. На рис. 6.11,
(ж) показан процесс выравнивания давления
в трубе и резервуаре, сопровождающийся
возникновением движения жидкости со
скоростью
.
Очевидно, что как только отражённая от
резервуара ударная волна достигает
крана, возникает ситуация, уже имевшая
место в момент закрытия крана. В опытах
Н.Е.Жуковского было зарегистрировано
до 12 полных циклов с постепенным
уменьшением
из-за трения в трубе и рассеивания
энергии в резервуаре.
Это формула Н.Е.Жуковского.
с – скорость распространения ударной волны, которая меньше скорости распространения звука в воде, равной 1425 м/с.
Формула Жуковского справедлива при очень быстром закрытии крана, когда время закрытия
где
l
– длина трубопровода; t0
– фаза гидравлического удара. При этом
условии имеет место прямой гидравлический
удар. При
возникает непрямой гидравлический
удар, при котором ударная волна,
отразившись от резервуара, возвращается
к крану раньше, чем он будет полностью
закрыт.
Гидравлический удар снижают при помощи особых открывающихся предохранительных клапанов, устроенных на трубопроводе.
Пример
Вода в трубопроводе движется со скоростью 2 м/с. Первоначальное среднее давление в трубопроводе pср = 60 м вод.ст.
Определить максимальную величину давления в трубопроводе при прямом гидравлическом ударе.
Плотность воды ρ = 1000 м3/с; скорость распространения ударной волны с = 1425 м/с.
Следовательно, суммарное давление после прямого гидравлического удара будет равно
