- •Гидравлика
- •Сведения из истории гидравлики в пгупс.
- •1 Введение в гидравлику
- •1.1 Определение науки «Гидравлика».
- •1.2 Жидкость.
- •1.3. Понятия реальной и идеальной жидкости. Вязкость.
- •1.4. Основные физические свойства реальных жидкостей.
- •1.4.1. Плотность жидкости ρ, вес единицы объёма γ.
- •1.4.2. Сжимаемость жидкости.
- •1.4.3. Расширение жидкости в связи с изменением температуры.
- •1.4.4. Сопротивление жидкости растягивающим усилиям.
- •1.5. Силы, действующие на жидкость. Напряженное состояние жидкости.
- •Гидростатика.
- •1.6. Гидростатическое давление и его свойства.
- •1.7. Дифференциальные уравнения покоя жидкости.
- •1.8 Интегрирование дифференциальных уравнений покоя (равновесия) жидкости.
- •1.9 Величина гидростатического давления в случае жидкости, находящейся под действием только одной объёмной силы – силы тяжести.
- •1.10 Вакуум
- •1.11 Статика газов
- •1.11.1 Уравнения состояния газов
- •1.11.2 Распределение давления газа по высоте
- •1.11.3 Распределение температуры газа по высоте
- •1.12 Относительный покой жидкости.
- •1.12.1 Свободная поверхность жидкости при равноускоренном или равнозамедленном прямолинейном движении.
- •1.12.2 Определение величины гидростатического давления.
- •1.13 Сила гидростатического давления, действующая на плоскую фигуру любой формы.
- •1.13.1 Сила pа
- •1.13.2. Положение центра давления.
- •1.14 Сила гидростатического давления, действующая на плоские прямоугольные фигуры.
- •1.15 Сила гидростатического давления, действующая на цилиндрические поверхности.
- •1.15.1 Первый случай цилиндрической поверхности.
- •1.15.2 Второй случай цилиндрической поверхности (вертикаль cc’ лежит внутри жидкости).
- •1.15.3 Третий случай цилиндрической поверхности.
- •1.16 Равновесие плавающих тел. Закон Архимеда.
- •1.17 Плавучесть тела и условия её обеспечения.
- •1.18 Остойчивость плавающего тела.
- •2. Основы технической гидродинамики.
- •2.1 Линия тока
- •2.2 Параллельноструйное, плавно изменяющееся и резко изменяющееся движения жидкости. Живое сечение, расход, средняя скорость и эпюра скоростей.
- •2.3 Неравномерное и равномерное, напорное и безнапорное движения жидкости.
- •2.4.1 Случай резко изменяющегося движения жидкости.
- •2.4.2. Случай плавно изменяющегося и параллельноструйного движений жидкости.
- •2.4.3 Уравнение неразрывности для газов
- •2.5 Уравнения Эйлера движения невязкой (идеальной) жидкости.
- •2.6 Интеграл Бернулли.
- •2.7 Уравнение Бернулли для идеальной несжимаемой жидкости.
- •2.8. О распределении давления в живых сечениях потока при параллельноструйном и плавно изменяющемся движениях жидкости.
- •2.9.1 Влияние неравномерности распределения скоростей u по плоскому живому сечению на количество движения (кд) массы м.
- •2.9.2. Влияние неравномерности распределения скоростей u по плоскому живому сечению на кинетическую энергию (кэ) массы м.
- •2.10 Уравнение Бернулли для целого потока реальной (вязкой) жидкости при установившемся движении.
- •2.11 Уравнение Бернулли для газов.
- •2.12 Гидравлическое уравнение количества движения для установившегося движения реальной жидкости.
- •2.13 Два режима движения реальной жидкости.
- •3. Потери напора при установившемся движении жидкости.
- •3.1 Общие указания о потерях напора. Гидравлические сопротивления.
- •3.2 Основное уравнение установившегося равномерного движения жидкости для «правильных» русел. Работа сил внутреннего трения.
- •3.3 Законы внутреннего трения в жидкости. Величина касательных напряжений трения при ламинарном движении жидкости.
- •3.4 Распределение скоростей u по живому сечению при ламинарном равномерном установившемся движении жидкости.
- •3.5 Формула Пуазейля для расхода q в круглоцилиндрической трубе. Потеря напора по длине при ламинарном равномерном установившемся движении жидкости.
- •3.6 Уравнения Навье-Стокса движения вязкой жидкости.
- •3.7 Пример точного решения уравнений Навье-Стокса.
- •4 Уравнения Рейнольдса.
- •4.1 Принципы осреднения актуальных (истинных) движений при турбулентном режиме. Пульсационные добавки.
- •4.2 Уравнения движения при турбулентном режиме потока.
- •5 Потеря напора при установившемся равномерном движении жидкости.
- •5.1 Коэффициент гидравлического трения.
- •5.2 Потери напора по длине при турбулентном установившемся равномерном движении жидкости для квадратичной области сопротивления.
- •6 Местные потери напора при турбулентном напорном установившемся движении жидкости.
- •6.1 Потери напора при резком расширении напорного трубопровода (формула Борда).
- •6.2 Остальные случаи местных потерь напора. Общая формула Вейсбаха.
- •6.3 Гидравлический расчет коротких трубопроводов.
- •6.4 Всасывающая труба насоса.
- •6.5 Гидравлический расчет длинных трубопроводов.
- •6.6 Расчёт трубопроводов для газов.
- •6.6.1 Расчет при малых перепадах давления.
- •6.6.2 Расчёт газопроводов при больших перепадах давления.
- •6.6.3 Гидравлический расчёт вытяжной дымовой трубы.
- •6.7 Понятие о гидравлическом ударе в трубопроводах
- •7 Истечение жидкости из отверстий и насадков.
- •7.1 Истечение из малого отверстия в атмосферу при постоянном напоре.
- •7.2 Траектория струи.
- •6.3 Истечение жидкости из насадков при постоянном напоре.
- •6.3.1 Внешний круглоцилиндрический насадок (насадок Вентури).
- •6.3.2 Внутренний круглоцилиндрический насадок (насадок Борда).
- •7.4 Истечение жидкости из отверстия в атмосферу при переменном напоре.
- •8 Равномерное безнапорное установившееся движение воды в открытых каналах.
- •8.1 Гидравлические элементы живого сечения потока в канале.
- •8.2 Гидравлически наивыгоднейший поперечный профиль трапецеидального канала.
- •8.3 Основные задачи при расчёте трапецеидальных каналов на равномерное движение.
- •8.4 Ограничение скоростей движения воды при расчёте каналов. Перепады.
- •1. Мероприятия по увеличению скорости .
- •2. Мероприятия по уменьшению скорости .
- •8.5 Расчёт каналов, имеющих замкнутый поперечный профиль.
- •1. Канализационные трубы.
- •9 Неравномерное безнапорное установившееся движение воды в каналах и естественных руслах.
- •9.1 Предварительные указания.
- •9.2 Основное дифференциальное уравнение неравномерного движения воды.
- •9.3 Второй вид дифференциального уравнения неравномерного движения воды.
- •9.4 Второй вид дифференциального уравнения неравномерного движения воды для случая цилиндрических русел.
- •9.5 Четыре вспомогательных понятия: удельная энергия сечения, критическая глубина, нормальная глубина, критический уклон.
- •9.6 Спокойное, бурное и критическое состояния потока.
- •9.7. Исследование форм (видов) кривой свободной поверхности потока в случае неравномерного плавно изменяющегося движения воды в цилиндрическом русле.
- •9.8 Построение кривой свободной поверхности потока по уравнению Бернулли методом конечных разностей (способ Чарномского)
- •10 Гидравлический прыжок и послепрыжковый участок.
- •10.1 Общие указания. Послепрыжковый участок.
- •10.2 Основное уравнение гидравлического прыжка.
- •10.3 Прыжковая функция. Определение одной из сопряжённых глубин по заданной другой сопряжённой глубине.
- •10.4 Основное уравнение прыжка в прямоугольном цилиндрическом русле.
- •10.5 Длина свободного прыжка в прямоугольном горизонтальном русле. Потери энергии в прыжке.
- •10.6 Особые виды гидравлического прыжка.
- •11 Водосливы
- •11.1 Терминология и классификация водосливов
- •11.2 Основная расчётная формула для прямоугольного водослива
- •11.3 Свободное истечение через неподтопленный прямоугольный водослив с вертикальной стенкой
- •11.4. Неподтопленный водослив с широким порогом
- •11.5 Критерий подтопления водослива с широким порогом
- •12 Сопряжение бьефов при устройстве плотин
- •12.1 Типы сопряжения бьефов
- •12.2. Гасители энергии потока
- •13. Плавно изменяющееся установившееся безнапорное движение грунтовой воды
- •13.1 Основные понятия
- •13.2 Ламинарная и турбулентная фильтрация
- •Значения коэффициента формы частиц крупнозернистых материалов
- •Величина коэффициента c0
- •13.3 Формула Дарси
- •13.4 Основное уравнение плавно изменяющегося безнапорного движения грунтовой воды (формула Дюпюи)
- •13.5 Определение коэффициента фильтрации в лабораторных условиях
- •13.6 Дифференциальное уравнение неравномерного плавно изменяющегося движения грунтовых вод в цилиндрическом русле
- •13.7 Интегрирование дифференциального уравнения неравномерного плавно изменяющегося движения грунтовой воды
- •13.8 Приток воды к совершенной водосборной галерее
- •Величины Jср среднего уклона кривой депрессии
- •13.9 Приток грунтовой воды к круглому совершенному колодцу
- •13.10 Фильтрация воды через однородную земляную дамбу
- •14. Основы физического моделирования гидравлических явлений
- •14.1 Общие сведения
- •14.2 Понятие о подобии гидравлических явлений
- •14.3 Критерии динамического подобия
- •14.3.1 Случай, когда на жидкость действуют только силы тяжести
- •14.3.2 Случай, когда на жидкость действуют только силы трения (вязкости)
- •14.3.3 Критерии подобия, выраженные через среднюю скорость
- •.3.4 Общий случай, когда на жидкость одновременно действуют несколько разных систем сил
- •14.4 Основные указания для моделирования гидравлических явлений
- •Требуемое для достижения динамического подобия отношение характеристики модели к соответствующей характеристике натуры
- •14.5. Пересчет модельных данных на натуру
- •1. Предмет гидрологии. Круговорот воды.
- •2. Основные элементы речных систем
- •3. Тип питания рек. Фазы водного режима.
- •4. Факторы стока воды.
- •5. Режим уровней воды в водотоках.
- •6. Ледовый режим рек
- •7. Закономерности движения воды в реках
- •8. Режим твердого стока
- •9. Русловой процесс
- •10. Инженерная гидрометрия
- •Список литературы
Сведения из истории гидравлики в пгупс.
В 20-х годах XIX века в Институте корпуса инженеров путей сообщения изучались гидрография, гидрометрия и гидродинамика. Гидрометрию читал П.П.Базен, который внёс существенный вклад в развитие теории волн, истечения через водосливы и насадки и другие разделы гидравлики. До 1831 года курс прикладной механики, включающей гидравлику, в Институте читал Клапейрон (из курса физики известно уравнение состояния идеального газа или уравнение Клапейрона – Менделеева). Затем его сменил П.П.Мельников, будущий министр путей сообщения, человек, которого по праву считают основоположником российской транспортной науки. В 1836 году Мельников опубликовал первый в России учебник по гидравлике.
Дальнейшее развитие гидравлического направления связано с именами выдающихся гидравликов и гидротехников: Д.Н.Дельвиг, Ф.Е.Максименко, Б.А.Бахметев, А.А.Саткевич, В.Н.Евреинов, Б.Е.Веденеев, В.Г.Глушков, М.М.Гришин, Г.О.Графтио, Н.Н.Павловский, С.Я.Жук, Р.Р.Чугаев и др. Многие из них являлись известными учеными, руководителями строительства гидростанций и других гидротехнических сооружений, авторами общепризнанных учебников или создателями первых проектных институтов.
Бахметев Борис Александрович (1880-1951) – выпускник Петербургского института путей сообщения 1903 г. Заложил основы современной гидравлической школы, решил в достаточно общей форме задачу об интегрировании дифференциального уравнения неравномерного движения воды в призматических руслах. В 1931 г. стал профессором Колумбийского университета. Получил признание как выдающийся гидравлик в США и Франции. Научные организации Франции наградили Бахметева большой золотой медалью Академии Пальм и присвоили самое почетное звание Officer of Akademy and of Public Instructor. Правительство Франции наградило его в 1946 году большой медалью «Победа».
Евреинов Владимир Николаевич (1880 – 1962). Окончил Институт путей сообщения в 1906 году. Сразу по окончании был приглашен на работу в гидравлическую лабораторию института инженером-лаборантом. В 1920 году ему было присвоено ученое звание профессора. В.Н.Евреинов автор фундаментального учебника «Гидравлика», который выдержал четыре издания. Ряд его научных работ посвящен выходным оголовкам водопропускных труб, применению расходящихся подмостовых русел под малыми мостами, влиянию вибрации на текучесть жидкости. С 1931 по 1962 г. Владимир Николаевич заведовал кафедрой гидравлики Института, имел звание заслуженного деятеля науки и техники РСФСР.
Глушков Виктор Григорьевич (1883 – 1937). Член-корреспондент АН СССР, академик ВАСХНИЛ. Окончил Петербургский институт инженеров путей сообщения в 1907 году. Один из основоположников инженерной гидрологии и основатель Государственного гидрологического института. Активный участник создания единой гидрометрической службы в стране. Внес большой вклад в разработку теории научных методов и практических основ мелиоративной гидрологии.
Веденеев Борис Евгеньевич (1885 – 1946). Выпускник Петербургского института инженеров путей сообщения 1909 года. С 1920 года участвовал в реализации плана ГОЭЛРО. С 1921 по 1927 год преподавал гидрологию в Институте инженеров путей сообщения. В 1927-1932 гг. был главным инженером Днепрогэсстроя. В 1932 году был избран академиком АН СССР. Внёс существенный вклад в создание теоретических основ технико-экономической оценки эффективности гидроэнергостроительства. С 1937 по 1846 г. был депутатом Верховного Совета СССР. Имя академика Б.Е.Веденеева носит Всероссийский НИИ гидротехники (Санкт-Петербург).
Павловский Николай Николаевич (1884 – 1837). В 1912 году с отличием закончил Институт инженеров путей сообщения. Один из основателей теории фильтрации грунтовых вод под гидротехническими сооружениями, предложил новый метод решения фильтрационных задач – метод электрогидродинамической аналогии. Начиная с 1917 года в течение нескольких лет преподавал гидравлику в Петроградском институте инженеров путей сообщения.
В 1927 году окончил Институт Роман Романович Чугаев (1904 – 1981), заслуженный деятель науки и техники РСФСР, доктор технических наук, профессор. В 1960 году возглавил кафедру гидравлики Ленинградского политехнического института. К его основным научным достижениям относятся исследования по теории фильтрации грунтовых вод под плотинами. Р.Р.Чугаевым создан прекрасный учебник по гидравлике, который переиздавался три раза и до настоящего времени является одним из лучших.
