Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
практикум для лечебников.doc
Скачиваний:
53
Добавлен:
14.11.2019
Размер:
4.19 Mб
Скачать

Строение атомов, физические и химические свойства пниктогенов

Пниктогены в целом характеризуются как неметаллы, однако только для N, P и As неметаллические свойства являются преобладающими. Для сурьмы, и в особенности для висмута, металлические свойства выражены сильнее, чем неметаллические. В связи с этим Sb и Bi часто относят к металлам. Но, в отличие от типичных металлов, сурьма и висмут не обладают ковкостью, пластичностью, а, наоборот, являются хрупкими веществами, гораздо хуже проводят электрический ток. Например, удельная электропроводность висмута при 18оС почти в 100 раз меньше, чем у серебра.

Некоторые физические свойства атомов пниктогенов и образуемых ими простых веществ представлены в таблице 15.

Таблица 15. Некоторые физические свойства атомов элементов VA группы и образуемых ими наиболее устойчивых аллотропных модификаций

Символ элемента

N

P

As

Sb

Bi

Радиус атома, нм

0,052

0,092

0,1

0,119

0,13

Энергия ионизации атома, кДж/моль

1400

1060

970

830

770

Относительная электроотрицательность

3,07

2,1

2,2

1,82

1,67

Агрегатное состояние, образуемого простого вещества (при н.у.)

газ

тв. тело

тв. тело

тв. тело

тв. тело

Плотность простого вещества (н.у.) г/см3

0,00125

2,2

5,7

6,68

9,8

Температура плавления простого вещества, оС

-210

~1000 (для черного фосфора

817

~630

271

На внешнем энергетическом уровне атомы элементов VA группы имеют по 5 электронов.

R

Азот отличается от всех остальных элементов группы тем, что у него на внешнем слое отсутствует d-подуровень.

В невозбужденном состоянии все элементы VA группы имеют на внешнем электронном слое их атомов 3 неспаренных электрона. Значит, они могут образовать по обменному механизму три ковалентные связи с другими атомами и их валентность в этом случае будет равна трем. В возбужденном состоянии количество неспаренных электронов может увеличиваться до 5 за счет распаривания электронной пары:

Соответственно и валентность в этом случае тоже будет равна 5.

У азота электронная пара не может распариться, поэтому его атомы в соединениях образуют только 3 ковалентные связи по обменному механизму. Однако в ряде веществ (NH4Cl, HNO3 и т.д.) валентность азота может быть равна 4. Дополнительная четвертая связь в этом случае возникает по донорно-акцепторному механизму, причем атомы N выступают в роли донора электронной пары.

Элементы VА группы в соединениях проявляют как положительную, так и отрицательную степень окисления.

Положительную степень окисления они проявляют при взаимодействии с атомами более электроотрицательных элементов, чем сами. В этом случае они выступают в роли восстановителей и отдают другим атомам неспаренные электроны со своего внешнего слоя. Величина степени окисления при этом будет равна +3 (в стационарном состоянии) или +5 (в возбужденном состоянии).

Атомы азота также могут проявлять степень окисления +5, образуя 4 ковалентные связи (три по обменному механизму и одну по донорно-акцепторному), как, например, в молекуле азотной кислоты:

Причем при образовании ковалентной связи по донорно-акцепторному механизму они отдают более электроотрицательному атому кислорода не один неспаренный электрон, а сразу 2 (т.е. готовую электронную пару).

Отрицательную степень окисления элементы VА группы проявляют при взаимодействии с атомами менее электроотрицательных элементов, чем сами. В этом случае они выступают в роли окислителя и забирают от других атомов три недостающих до завершения своего внешнего слоя электрона. Величина степени окисления при этом равна -3.

С водородом элементы VA группы образуют газообразные соединения вида:

Из-за меньшей разницы в электроотрицательности связь R-H у элементов данной группы менее полярная и более крепкая, чем связи в аналогичных соединениях с водородом у галогенов и халькогенов. Поэтому водородные соединения пниктогенов не обладают кислотными свойствами и не отщепляют в водном растворе ионы H+. При растворении в воде, они, наоборот, могут присоединять к себе ион Н+ по донорно-акцепторному механизму, проявляя тем самым основные свойства:

RH3 + H2O = RH4+ + OH‾

Однако такая реакция характерна лишь для NH3. Фосфин (РН3) может присоединять к себе ион водорода только в растворах сильных кислот. Для водородных соединений других элементов подгруппы подобные реакции практически не характерны.

Термическая устойчивость водородных соединений в группе сверху вниз уменьшается. Арсин (AsH3), стибин (SbH3) при слабом нагревании легко распадаются с образованием простых веществ. Висмутин (BiH3) неустойчив уже при обычных условиях, его достаточно сложно получить и поэтому он мало изучен.

Водородные соединения элементов VA группы являются сильными восстановителями, особенно BiH3, и обладают токсическими свойствами.

С кислородом пниктогены образуют оксиды вида R2O3 и R2O5. Кислотный характер этих оксидов в группе сверху вниз уменьшается. Особенно это характерно оксидам вида R2O3: N2O3, Р2О3 – кислотные оксиды, As2O3 – амфотерный оксид с преобладанием кислотных свойств, Sb2О3 – амфотерный оксид с преобладанием оснóвных свойств, Bi2О3 – оснóвный оксид. Такой характер изменения кислотности оксидов объясняется увеличением металлических и уменьшением неметаллических свойств у элементов в группе сверху вниз.

Кислотным оксидам элементов данной группы соответствуют метакислоты: H O2 или H O3, либо ортокислоты H3 O3 или H3 O4 (оксиды азота образуют только метакислоты HNO2 и HNO3).

Сила однотипных кислородсодержащих кислот в группе сверху вниз уменьшается.

В VА группе закономерно изменяются физические свойства и реакционная способность простых веществ, образуемых ее элементами. Сверху вниз растет их плотность.

Температура плавления изменяется в соответствии с типом кристаллической решетки, присущей данному веществу.

Азот (N2) имеет самую низкую температуру плавления, т.к. при обычных условиях он находится в газообразном состоянии. Наибольшую температуру плавления имеет черный фосфор, кристаллическая решетка у которого является атомной. Температура плавления простых веществ, образованных другими элементами (As, Sb, Bi) в группе сверху вниз уменьшается (табл. 15). Это объясняется возрастанием металлических свойств элементов, вследствие чего кристаллическая решетка образуемых ими простых веществ от атомной постепенно переходит к металлической. Из-за этого окислительные способности простых веществ сверху вниз уменьшаются, зато возрастают их восстановительные свойства. Так, N2, являясь типичным неметаллом, обладает, главным образом, окислительными свойствами, а Bi ведет себя как металл, то есть является восстановителем.