Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические методы в биологии.doc
Скачиваний:
40
Добавлен:
13.11.2019
Размер:
2.49 Mб
Скачать

Показатели центральной тенденции. Средние.

В отличие от индивидуальных числовых характеристик средние величины обладают большей устойчивостью, способностью характеризовать целую группу одним (средним) числом.

В зависимости от того, как распределены исходные данные - в равно- или неравноинтервальный вариационный ряд, для их характеристики применяют разные средние величины. Именно при распределении собранных данных в неравноинтервальный вариационный ряд более подходящей обобщающей характеристикой изучаемого объекта служит так называемая плотность распределения, т. е. отношение частот или частостей к ширине классовых интервалов. Кроме того, числовыми характеристиками таких рядов могут служить средние из абсолютных или относительных показателей плотности распределения. Средняя плотность показывает, сколько единиц данной совокупности приходится в среднем на интервал, равный единице измерения учитываемого признака.

В качестве статистических характеристик равноинтервальных вариационных рядов применяют средние величины.

Средняя арифметическая. Этот показатель является центром распределения, вокруг которого группируются все варианты статистической совокупности. Средняя арифметическая может быть простой и взвешенной. Простую арифметическую определяют как сумму всех членов совокупности, деленную на их общее число.

Когда отдельные варианты повторяются, среднюю арифметическую вычисляют по формуле: и называют взвешенной средней.

Имеется распределение учета численности косуль за апрель 2003г. Требуется вычислить среднее количество косуль за учет.

Число косуль

0

1

2

3

4

5

Итого 30

Число учетов

3

7

10

4

3

3

X=(7+20+12+12+15)/30=66/30=2.02.

В биологических науках среднюю арифметическую принято обозначать как М.

Средняя арифметическая обладает рядом важных свойств.

1. Если каждую варианту статистической совокупности уменьшить или увеличить на некоторое произвольно взятое положительное число, то и средняя уменьшится или увеличится на это число.

2. Если каждую варианту разделить или умножить на какое-то одно и то же число, то и средняя арифметическая изменится во столько же раз.

3. Сумма произведений отклонений вариант от их средней арифметической на соответствующие им частоты равна нулю.

4. Сумма квадратов отклонений вариант от их средней меньше суммы квадратов отклонений тех же вариант от любой другой величины.

Это свойство среднего имеет приложения в приближенных решениях задач следующего вида. Допустим, на основании достаточно обширного экспериментального материала известны средние характеристики одного и того вида животных или растений, занимающих разные экологические ниши. Экземпляры из разных мест обитания будут, как правило, отличаться по численным значениям некоторых характеристик. Если в распоряжении исследователя оказалась одна или несколько особей, для которых известно, что они взяты из одного какого-то местообитания, но неизвестно, из какого именно, то как решить вопрос об их принадлежности к той или иной экологической нише? (Впервые поставил и решил такую задачу немецкий ихтиолог Ф. Гейнике при изучении принадлежности отдельных особей к той или иной расе сельдей Северного моря. При этом было использовано приведенное выше свойство среднего.)

Как практически его использовать, покажем на следующем примере. Известен пример определения вида по 8 количественным характеристикам измерения черепа. Были найдены отклонения этих характеристик для черепа зайца неизвестного вида от соответствующих средних для зайца-беляка и зайца-русака. Ряды отклонений по абсолютной величине выглядят так: беляка— 1,7; 4,2; 0; 2; 1,8; 3,4; 0,6; 6,1, от русака—2,8; 2,5; 1; 0; 0,8; 2,1; 2,1; 2. Суммы квадратов этих отклонений равны соответственно 60,05 и 28,55, поэтому сделан вывод о том, что неизвестный череп принадлежал зайцу-русаку.

Средняя гармоническая. Эту характеристику в отличие от средней арифметической определяют как сумму обратных значений вариант, деленную на их число.

Средняя гармоническая применяется тогда, когда результаты наблюдений обнаруживают обратную зависимость заданных обратными значениями вариант.

5 студентов за 1 час набрали следующее количество жуков: 1 - 10, 2 - 20, 3 - 25, 4 - 30, 5 - 20. Всего 105 штук. Оценим итоги с помощью Х и Хh. X=21 жук.

Xh=5/(1/10+1/20+1/25+1/30+1/20)=18.31.

Разница весьма заметна. Какая же из средних верна. Попробуем с помощью Х вычислить время, затраченное на 1 жука - 60/21=2.86 мин. Верно ли это ? Проверим результат. первый студент затратил 6 мин, 2 - 3, 3 - 2.4, 4 - 2, 5 - 3. В среднем получится 3.38мин. Видно, что средняя арифметическая непригодна для определения среднего времени, затрачиваемого на поимку 1 жука.

Средняя квадратическая. Для более точной числовой характеристики мер площади применяется средняя квадратическая.

.

Имеются три участка земельной площади со сторонами квадрата x1=100м, x2=200м, x3=300м. Если использовать арифметическую среднюю величину, то общая площадь всех участков была бы 3*2002=120000м2. Правильный ответ дает средняя квадратическая величина – 3*2162=140000м2.

Средняя кубическая. В качестве характеристики объемных признаков более точной является средняя кубическая.

Средняя геометрическая. Этот показатель представляет собой корень n-й степени из произведений членов ряда. Средняя геометрическая - более точная характеристика рядов динамики, чем средняя арифметическая. Однако, они, как правило, незначительно отличаются друг от друга. К тому же вычисление средней арифметической проще. Поэтому вместо средней геометрической в качестве приближенной характеристики темпов динамики нередко используют среднюю арифметическую. При этом приходится учитывать, что средняя геометрическая дает хорошие (не искаженные) результаты лишь при наличии геометрической прогрессии, заложенной в самой динамике явления. Это обстоятельство ограничивает область применения средней геометрической.

Количество волков в прошлом году увеличилось в два раза и в этом еще в три раза. Ясно, что за два года численность выросла в 6 раз. Каков средний рост за год? Арифметическая средняя здесь непригодна, ибо если за год численность возросла бы в (2+3)/2=2,5 раз, то за два года численность бы выросла в 2,5*2,5=6,25 раз, а не в шесть раз. Геометрическая средняя дает правильный ответ: 6 = 2,45 раз.