
- •Все вещества состоят из атомов или молекул
- •Атомы и молекулы веществ находятся в состоянии беспорядочного движения
- •Между атомами и молекулами вещества действуют как силы притяжения, так и силы отталкивания.
- •2. Давление
- •3. Уравнение состояния идеального газа
- •4. Законы идеальных газов
- •Изотермический процесс
- •Изобарический процесс
- •Изохорический процесс
- •Закон Авогадро
- •Закон Дальтона
- •5. Барометрическая формула
- •З акон Больцмана
- •6. Распределение молекул по скоростям
- •7. Функция распределения
- •9. Формула Максвелла
- •10. Средняя арифметическая, средняя квадратичная и наивероятнейшая скорости молекул
- •11. Кинетическая теория теплоты Внутренняя энергия идеального газа
- •12. Первое начало термодинамики
- •§5. Макроскопическая работа
- •13. Различные приложения I начала термодинамики. Теплоёмкость
- •15, 16 Классическая теория теплоёмкости и её недостатки
- •19. Адиабатический процесс. Уравнение Пуассона
- •20. Работа при адиабатическом изменении объёма газа
- •21. Политропический процесс
- •22. Столкновение молекул и явления переноса
- •§2. Среднее число столкновений в единицу времени и средняя длина свободного пробега молекул
- •§3. Рассеяние молекулярного пучка в газе
- •23. Явление переноса в газах. Уравнение переноса
- •24. Диффузия
- •25. Теплопроводность газов
- •26. Вязкость газов (внутреннее трение)
- •28. Неидеальные газы. Уравнение Ван-дер-Ваальса. Отклонение свойств газов от идеальности
- •29. Фаза и фазовые равновесия
- •30. Уравнение Ван-Дер-Ваальса
- •31. Изотермы Ван-дер-Ваальса
- •32. Критическая температура и критическое состояние
- •33. Приведенное уравнение Ван-дер-Ваальса. Закон соответственных состояний
- •34. Равновесные состояния
- •Обратимые и необратимые процессы
- •35. Необратимость и вероятность
- •37. Внутренняя энергия
- •38. Цикл Карно
- •39. Коэффициент полезного действия в цикле Карно
- •. Холодильная машина
- •40. Свободная энергия
- •41. Энтропия
- •42. Некоторые термодинамические соотношения
- •44 Закон возрастания энтропии. Второе начало термодинамики
- •Увеличение энтропии при теплопередаче
- •45. Энтропия и вероятность
- •46 Энтропия и беспорядок
- •47. Третье начало термодинамики
- •§9. Сжижение газов
- •48. Эффект Джоуля-Томсона
- •50. Строение жидкостей
- •51. Поверхностное натяжение
- •52. Условия равновесия на границе двух сред. Краевой угол
- •53. Силы, возникающие на кривой поверхности жидкости
- •54. Капиллярные явления
- •55. Упругость насыщенного пара над кривой поверхностью жидкости
- •56. Условия равновесия фаз химически однородного вещества
- •§3. Уравнение Клапейрона
Закон Дальтона
Пусть в сосуде с
объёмом V
находится в термическом равновесии
смеси различных химически не реагирующих
друг с другом газов. Для такой смеси
уравнение состояния имеет вид
,
где N1,
N2,
N3,…
- числа молекул
соответствующих компонентов смеси.
Очевидно, что N1
+ N2
+ N3
+ … = N,
где N
– общее число молекул в сосуде. Давление
смеси газов равно:
Это выражение показывает, что каждая группа молекул оказывает давление, не зависящее от того, какое давление оказывают другие молекулы. Это обусловлено тем, что в идеальном газе между молекулами нет взаимодействия, молекулы «не знают» о существовании других молекул.
Выражения
называют парциальными давлениями.
Парциальным
давлением какого-либо газа – компонента
газовой смеси называется давление,
которое оказывал бы этот газ, если бы
он занимал весь объём занимаемый смесью.
Таким образом
,
т. е. давление смеси газов равно сумме парциальных давлений её компонент. Это есть содержание закона Дальтона.
В конце отметим, что с точки зрения термодинамики, газ, подчиняющийся всем перечисленным выше законам, называется идеальным газом. Реальный газ по своим свойствам близок к идеальному газу при высоких температурах и низких давлениях.
5. Барометрическая формула
Хаотические молекулярные движения приводят к тому, что молекулы газа равномерно распределяются по объёму сосуда, что концентрация частиц во всех частях сосуда становится одинаковой. В равновесном состоянии давление и температура газа также одинакова во всём объёме. Но это возможно только тогда, когда на молекулы не действуют внешние силы. При наличии таких сил, молекулярные движения приводят к особому поведению газов. Рассмотрим газ, находящийся в поле силы тяжести. Если бы отсутствовало тепловое движение молекул, то все молекулы под действием силы тяжести упали бы на поверхность земли, и весь воздух собрался бы тончайшем слое. Если бы отсутствовала сила тяжести, но существовало бы молекулярное движение, молекулы разлетелись бы по всему мировому пространству. Одновременное наличие силы тяжести и теплового движения молекул воздуха приводит к образованию воздушного слоя вокруг земли – атмосферы. При этом в атмосфере устанавливается вполне определённое распределение молекул по высоте. В соответствии с этим устанавливается и определённый закон изменения давления газа с высотой. Определим закон распределения давления с высотой.
Рассмотрим вертикальный столб воздуха (рис.4). Пусть у поверхности земли, где h=0, давление равно P0, а на высоте h равно P.
Так как давление определяется весом вертикального столба воздуха, находящиеся под площадкой 1м2 на этой высоте, с увеличением высоты на dh, давление уменьшится на величину dP, причём dP будет определяться весом столба воздуха высотой dh и площадью основания 1м2:
,
(3.31)
где r - плотность воздуха, g – ускорение свободного падения. Знак (-) показывает, что с ростом высоты давление уменьшается. Учитывая, что
r=mn,
где m – масса молекулы газа, n – концентрация, а из кинетической теории n=P/kБT, (3.31) перепишем в виде
.
(3.32)
Получили дифференциальное уравнение, описывающее изменение давление с высотой.
В дальнейшем сделаем допущение, что температура и ускорение свободного падения не зависит от высоты, что, вообще говоря, неверно. Разделив в (3.32) переменные, получим
.
Интегрируя обе стороны данного уравнения, имеем
,
(3.33)
где c – постоянная интегрирования.
Потенцирование выражения (3.33) даёт
.
(3.34)
Постоянную с определим из условия, что при h=0, P=P0. Поставив в уравнение (3.34) эти значения h и P, получим
с=P0.
Таким образом, зависимость давления от высоты над поверхностью земли определяется следующим выражением
.
(3.35)
Учитывая, что m=m/NA, R=kБNA, имеем
.
(3.36)
Уравнение (3.35) и (3.36) называются барометрическими формулами. Из этого уравнения видно, что давление газа убывает с высотой по экспоненциальному закону. Этим законом пользуются для определения высоты над землёй путём измерения давления на данной высоте. Приборы, служащие для измерения высоты горных вершин, высоту полёта самолёта представляют собой специальные барометры, шкала которых проградуирована в метрах.
Так как давление газа P=n kБT , то из формулы (3.36) можно получить следующий закон убывания концентрации с высотой
,
(3.37)
где n и n0 – концентрация молекул в точках, между которыми разность высот равна h.